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Abstract

We start by constructing gene-gene association networks based on about 300 genes whose expression
values vary between the groups of CFS patients (plus control). Connected components (modules) from
these networks are further inspected for their predictive ability for symptom severity and genotypes of
two single nucleotide polymorphisms (SNP) known to be associated with symptom severity. We use
two different network construction methods and choose the common genes identified in both for added
validation. Our analysis identified eleven genes which may play important roles in certain aspects
of CFS or related symptoms. In particular, the gene WASF3 (aka WAVE3) possibly regulates brain
cytokines involved in the mechanism of fatigue through the p38 MAPK regulatory pathway.

1 Introduction and a summary

Chronic Fatigue Syndrome (CFS) is a relatively rare, poorly understood, complex disorder that is
characterized by severe and chronic physical and mental fatigue not attributable to other causes (dis-
eases) which is sometimes accompanied by other symptoms such as weak immune response, digestive
problems and depression. A great deal of effort has been put forth in recent years in collecting clinical,
gene expression, gynotypic and proteomic data by the Chronic Fatigue Syndrome Group at CDC in
an attempt to find a genetic basis of CFS. Even though these data have been analyzed by numerous
researchers (and research teams) in the last two years resulting in a special issue of the journal Phar-
macogenomics (Vernon and Reeves , 2006) and were also as part the CAMDA conference in 2006, the
type of success has been mixed and limited.

Our attempt in analyzing these data as part of this year’s CAMDA competition takes a systems
biology approach where we study groups of genes (called modules) obtained from gene-gene association
networks since genes do not act alone, especially, for a complex disorder. Thus, our approach is
similar to that by Presson et al. (2006), although our network construction methods and the statistical
analyses are different from theirs. At the end, we identify eleven “interesting” genes which may play
important roles in certain aspects of CFS or related symptoms. In particular, the gene WASF3 (aka
WAVE3) possibly regulates brain cytokines involved in the mechanism of fatigue through the p38
MAPK regulatory pathway.

2 CAMDA datasets

The CDC Chronic Fatigue Syndrome Research Group provided challenge datasets consisting of clinical,
microarray, proteomics, and SNP data that were used for both CAMDA 2006 and CAMDA 2007
competitions. 227 subjects filled self-administered questionnaires and had their blood drawn for lab
analysis. For many of them, microarray (163) and proteomics (60) data were also collected for the
purpose of discovering biological (genetic) basis of CFS. In this work, we integrate clinical, microarray,
and SNP data for our analysis.
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2.1 Microarray Data

Camda 2006 microarray data consists of 177 arrays, 9 of which were repeated twice at different times
during the study. We discarded these 9 microarrays for multiplicity reasons and additional 5 arrays
were excluded from this analysis due to the absence of clinical information on the subjects. Thus, we
started our analysis with 163 arrays. Subtracted ARM (Artifact-removed) density column which is
already adjusted for the background density was log-transformed to stabilize the variance.

2.2 Clinical Data

Clinical data contains extensive information on 227 subjects and can be linked to microarray and SNP
data via the ABTID subject ID. The two pieces of clinical data that we made use of were the Intake
Classific variable classifies patients into 5 categories and the Cluster variable provides information on
the severity of the symptoms (“Worst”, “Middle”, “Least”) for some patients.

2.3 SNP Data

Fortytwo Single nucleotide polymorphisms (SNP’s) for 10 different genes were genotyped. For the
purposes of this analysis, we selected two SNP’s, hCV245410 (on gene TPH2) and hCV7911132 (on
gene SLC6A4), which were previously identified (Presson et al., 2006) to be associated with CFS
severity.

Table 1: Gene association modules discovered by the PLS based network inference method. For each
such module (in rows) we are listing the number of genes, relative association strength, gene names,
and p-values for the three log-linear models as discussed in the text. Genes in red have also been
included into modules by the PC method as well.

# of
Genes

Average
Scores(%)

Gene Symbols Severity
p-value

hCV245410
p-value

hCV7911132
p-value

4 100 MTA1, SRP68, XM 049568, CLDN10 0.7588 0.3869 0.0328
9 88 CREB5, MED6, UPP1, NP 775847.1, ABCG8,

RNF25, XM 089436, THSD1, NM 022084
0.1645 0.2970 0.1271

5 85 HOXA1, NAGA, GAK, CK021 HUMAN, CDH23 0.4978 0.2636 0.6640
6 81 IER2, TCIRG1, XM67745, XM 065828,

XM70678, HDAC7A
0.5051 0.5825 0.1689

*5 79 WASF3, NUP98, PRUNE, NP 079431.1, KIR-
REL3

0.0154 0.0163 0.1665

6 78 ZFYVE19, AK024757, CNGB1, WARS2, SPIN2,
XM 069044

0.0081 0.7775 0.1203

5 77 PCDH21, ASS, GTF2I, ARID4B, TNFSF13B 0.3015 0.4987 0.0112
9 77 AB082528, HNRPLL, HBLD2, ZNF165, MOG,

SORL1, VAT1, EPC2, NP 787114.1
0.0063 0.8304 0.1047

4 77 MTMR8, NP 076414.2, MLL3, XM 087606 0.0032 0.5670 0.2732
4 76 ZFYVE9, RAD51C, XM 085181, ZBTB11 0.2778 0.4110 9e-04
4 75 TNK2, EIF3S8, PMS2L5, TCP11 0.1286 0.6770 0.1270
4 73 MAP3K2, ATF5, AF107495, GALK2 0.0436 0.2459 0.1904
15 72 CDC2L5, PLP2, NR1H2, PLAUR, SPATA11,

NP 060367.1, KCNQ5, COL9A1, AF173157,
XM 067644, MAB21L1, CNR2, NP 054868.2,
RAB32, ADAM9

0.0145 0.0960 0.2859

4 18 SLC1A4, F13A1, RGSL2, GUSB 0.0053 0.7451 0.4517
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3 Statistical Analysis

The first step of the statistical analysis we performed was to identify a set of differentially expressed
genes between different groups of subjects. Disease status of subjects came from the clinical portion of
the CFS data (Intake Classific variable). All subjects included in the microarray study were classified
into 5 different groups: Ever CFS - 45 subjects ever experiencing CFS, Nonfatigues - 34 controls
who never experienced CFS, Ever ISF - 45 subjects who are fatigued but cannot be classified as CFS
because of insufficient symptoms, Ever ISF-MDDm - 20 subjects experiencing ISF with melancholic
depression, Ever CFS-MDDm - 19 subjects experiencing CFS along with melancholic depression.

ANOVA F-test for each probe was carried out to determine differentially expressed genes across
the five groups. 286 probes were identified as differentially expressed (p-values < 0.01). Since we are
not interested in determining the differentially expressed genes per se, multiplicity correction was not
used. The reduced microarray data consisting of 286 probes and 163 samples (subjects) was used later
for further statistical analysis as discussed below.

3.1 Network Construction and Identification of Associated Gene Sets

To better understand the relationships between the selected 286 probes in terms of interactions/
associations, we employ two computational network inference techniques. The first method is based
on the Partial Least Squares regression (PLS) (Pihur et al., 2007), while the second method is based
on the Partial Correlations (PC) (Schäfer and Strimmer, 2005). A number of similar characteristics
are shared by the two approaches, such as computing association scores whose magnitude reflects the
strength of the interaction between genes and local false discovery rate (local fdr) Empirical Bayes
procedure for multiplicity adjustment in testing multiple hypotheses.

Table 2: Gene association modules discovered by the PC based network inference method.
# of
Genes

Average
Scores(%)

Gene Symbols Severity
p-value

hCV245410
p-value

hCV7911132
p-value

4 100 SRP68, MTA1, XM 049568, CLDN10 0.7588 0.3869 0.0328
5 85 ABCG8, NP 775847.1, UPP1, NM 022084,

THSD1
0.0329 0.2552 0.1428

9 85 CASP3, XM72572, TMEM5, XM14557, CANT1,
XM 033654, FOXF1, VCPIP1, PRUNE

0.1299 0.5498 0.2732

*24 84 CHST3, SIP1, TNK2, CLIC2, AK097480,
NP 065988.1, XM 065828, EIF3S8, HES1,
HOXA1, PMS2L5, KCNH2, XM66160,
TNFRSF14, EFEMP1, KCNQ2, WASF3,
Q8N8I1 HUMAN, MYPN, HDAC7A, WDR32,
NP 620310.1, GPR41, MAP3K2

0.0169 0.0586 0.6642

6 84 NP 060367.1, SPATA11, XM 058846, CDC2L5,
RAB32, NP 054868.2

0.0315 0.3867 0.1895

6 83 NAGA, CDH23, GAK, NP 061934.2,
CK021 HUMAN, ZFYVE9

0.1886 0.8259 0.08

14 82 CHST4, CDR2, NP 114416.1, NP 056318.1,
IKBKAP, KIRREL3, FAS, ZNF77, B3GALT3,
MST1R, XM71032, PNLIPRP1, OPRD1,
MRPL50

1e-04 0.9611 0.4225

4 81 VIPR1, CFLAR, SPTA1, ZNF7 0.0105 0.5447 0.7448
8 79 CNGB1, KRT20, TCIRG1, PGLYRP3, PRSS12,

SMPX, XM 085181, XM70678
0.0932 0.6724 0.4883

4 78 CHD3, AK075566, XM14294, NP 062550.2 0.0536 0.838 0.9018
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The results from applying the PLS and PC network reconstruction techniques to the reduced
microarray data are summarized in the first three columns of Tables 1 (for PLS) and 2 (for PC). The
actual visual representation of the networks themselves can be found on the supplementary website
at http://www.somnathdatta.org/Supp/CamdaCFS/supp.htm. Both Tables 1 and 2 have the same
structure. The first column shows the number of genes in distinct gene association modules (connected
components) within each network. Gene association modules were defined to be clusters of 4 or more
connected genes such that genes in two distinct components are not connected by an edge. Thus,
it differs from the definition used in Presson et al. (2006). The tables are sorted by the second
column which displays the percentages of each module’s average association score when compared
to the module with the largest average association score (the first module in each table). The exact
definition of association scores are dependent on the method used. As for example, for the PC method,
the association score of an edge is the partial correlation between the connected gene pair. Finally, in
the third column we list all the genes belonging to each individual module. Genes shown in red are
the genes that appear in both tables.

3.2 Regression of Symptom Severity

After identifying clusters of associated/interacting genes, we investigate the ability of each module to
predict the CFS severity level. For that purpose, we fit a log-linear model for each gene module to
regress the clinical variable Cluster on the set of expression profiles of genes included in the module.
The overall predictive ability of the CFS severity by a given module can be judged on the basis of the
likelihood ratio test which compares the full model (all genes in a module included as covariates in
the model) and the null model which includes no covariates. The p-values obtained from the tests are
shown in the fourth column of Tables 1 and 2. Small p-values indicate that gene association modules
are effective in predicting the symptom severity categories.

Table 3: Common genes from the two PLS and PC clusters identified as predictive of disease severity
status and SNP hCV245410 genotype. GO annotations and pathways were available from existing
literature.
Gene GO Process Pathways Description

WASF3 Cell Organization and Biogenesis,
Metabolism

Adherens Junction Actin-binding WH2

NUP98 Cell Organization and Biogenesis,
Transport, DNA Replication

RAN regulation

PRUNE Energy production and conversion Purine metabolism Glycoside hydrolase, Phosphoesterase
KIRREL Signal Transduction, Cell Adhesion Integral to membrane, protein binding
TNK2 Cell Organization and Biogenesis, Sig-

nal Transduction, Protein amino acid
phosphorylation

Regulation of CDC42
activity, Regulation
of RAC1 activity

PAK-box/P21-Rho-binding, Protein ki-
nase

EIF3S8 Protein Biosynthesis Translation initiation factor activity
HOXA1 Transcription p44/42 MAP kinase Sequence-specific DNA binding
PMS2L5 DNA Repair ATP binding, damaged DNA binding
HDAC7A DNA Metabolism, Transcription Histone deacetylase 7A
GPR41 Signal Transduction p53/Bax pathway G Protein-Coupled Receptor
MAP3K2 Protein amino acid phosphorylation Mapk signaling, Gap

Junction
Mitogen-activated protein kinase

3.3 Regression of SNP

Carrying out a similar analysis as in the previous section, we study how effectively each gene cluster
(module) can predict the genotypes of the two SNP’s, hCV245410 and hCV7911132, which have been
identified by Presson et al. (2006) to be associated with symptom severity. Again, we fit multiple
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log-linear models and compute the p-values for the likelihood ratio tests. The p-values for both SNP’s
are shown in columns 5 and 6.

4 Discussion of Results

Two gene association modules (indicated by asterisks) are of interest based on their predictive ability
of symptom severity and of, at least, one of the SNP genotypes. The first cluster comes from the
PLS reconstructed network and the other one from the PC reconstructed network. Table 3 lists the
eleven genes that are in common between these two gene modules. The GO annotations listed in the
table were mined from the BioGrid online repository (Stark et al., 2006) and the pathway analysis was
conducted using the DAVID webtools (Dennis et al., 2003) in addition to mining existing literature.

It is plausible that these genes are responsible for certain aspects of CFS or its symptoms. As for
example, the first gene on the list WASF3 (aka WAVE3) is thought to take part in the p38 MAPK
regulatory pathway (Sossey-Alaoui et al., 2005). On the other hand, in recent animal model studies
(Katafuchi et al., 2006), it has been demonstrated that regulation of brain cytokines through p38
MAPK pathway is involved in the in the central mechanisms of fatigue and therefore may play a role
in the pathogenesis of the CFS. The list also includes autoimmune response gene NUP98 and genes
related to tumor activities (PRUNE, TNK2, HOXA1). Gene expression of HDAC7A has been shown
to be correlated with unexplained fatigue in a past study (Whistler et al., 2006). The gene GPR41’s
role in autoimmune disorders including CFS has been hypothesised in Staines (2005).
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