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Microarray gene expression data and multivariagssification have been applied for tumour
classificatio® and to differentiate pharmacological mechanisrasiong other applications.
Because of the high relevance of a classificatesult, it is of primary importance to accurately
evaluate the expected performance of the classditaule. The evaluation is also needed in order
to decide among different classification rules, amldo to optimize (fine-tune) them. The
performance of a classification rule is usually leated with global measures such as:
sensitivity>®, the number of samples misclassifiedt the Area Under the ROC curve (AUC)
among othefs These measures are derived either from clasgifgirvalidation set (samples of
known class) or by cross-validation. Hence, theyehaglobal character, since they inform about
the expected performance of the classification wihen it is used to classify a large number of
future samples. However, they do not take into aotdhe expected loss in taking a particular
classification decision (i.e., classifying a newngde into a certain classy. Such expected loss is
measured by theonditional risk(eq 1 below for two-class classification problem):
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whereP(wy1 ), P(wx! ) are thea posterioriprobabilities calculated by the Bayes theofeamd
Mojl wx), Mol wy) are, respectively, the costs associated to degitiat the sampligh belongs to
“classj” when it actually belongs to “cladé and of classifying théh sample correctly into its
“classj”. A similar expression exist for the risk of agsigg the sample to clags

The conditional riskin eq 1 is often used as criterion for classifmata new sample is classified
into the class for which the risk of such a decisi® the lowesf. However, although the risk is
used to guide the classification, it is not usedefealuating the performance of a classificatide ru
using a validation set, since it does not inclua dlready known information about the class of
each sample. Hence, new measures to evaluate aligyqui a classification rule from a validation
set (or cross-validation) are needed. They shoake# tinto account the cost of classification
(through the Bayes risk) and also the global pertorce (through the sensitivity and specificity).

In this communication we present a new criterion dgaluating the quality of a classification
model. The criterion is shown here for probabitiddiscriminant Partial Least Squares (DPLS)
models although it might be suitable to evaluateeptclassification rules. DPLS has recently
received much attention in the microarrays figfd®*''Recently, a new probabilistic version of
DPLS has been developgedhat enables the calculation of the probabilitysiy functions for
each class, and hence, the calculation of the mdeddBayesian risk. The performance of these
models depends on the number of factors (latemablas) that are used to describe the data. This
number is decided by comparing the performance BL® models calculated using different
number of factors. Hence, an adequate measurefofipance is needed.

The performance criterion proposed in this commation, R, is evaluated either for a validation
set or by cross-validation, and combines the geitgjtthat is a global measure of performance of
the model, and the conditional risk, which is tlkpexted performance for individual samples. The
expression is derived for the classification oample in either two classes (class “0” or clasg,“1”
with the possibility of rejecting to classify ifetrisk of classification is above a certain thrégdlio



The criterion is given by:
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where R e IS the risk associated with classifying tiile validation sample in its known class,
R assignedS the risk we are actually taking when we clas#iith validation sample in the class of
minimum risk, | is the number of samples in the validation sek, i11, ir1 are the number of
validation samples of class 1 classified into classlass 1 (i.e., correctly classified) and regdct
respectively andjo; the cost of being wrong when classifying a sampleass 1 into class 0. The
termsiyo igo, iro @ndAjpare interpreted similarly for samples of class 0té\that the ternmyi/(ip1+
i1+ ir1) is (1-especificity) and the termo/(ioot+ irot i10) iS (1-sensitivity) of the classification rule.

This new criterion was used to decide the optinm@hglexity of a probabilistic DPLS model
applied to discriminate healthy and tumour samplfethe Prostate cancer datasethis dataset
consists of 12600 gene expressions from 102 samplgsre 1 showsR for DPLS models
calculated with 1 to 6 factors using 82 calibratsamples and validated using cross-validation. A
minimum is reached for 5 factors, which indicatest tis the optimal model complexity that gives
a compromise between sensitivity and minimal glotsk. Table 1 compares the optimal number
of factors obtained by other evaluation criteri@at&that, for a test sef; (values predicted by the
PLSD model, presented on figure 2), the models ithctors selected by other criteria have large
classification errors than the model of 5 factors.
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Fig 1. R evaluated for the different number of DPLS factorsFig 2 7 values predicted by DPLS models for the test
Contributions of each term of eq 2: first term),(second samples. Samples correctly classified as cla®g 0 (
term (»), and (1-especifity) {) and (1- sensitivity)'{), the  and class X)), respectively, ands) samples rejected.
third and the fourth term respectively.

Table 1.0ptimal number of factors following the differesriteria

RMSECV AUC Q° Total Error rate
Optimum number of factors 5 5 5 4
Number of samples misclassified 0 0 0 1
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