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Abstract 

Sequence motif search is one of the main themes of data mining approaches in bioinformatics. We have 
developed a new technology for searching a large-scale of gene expression data (typically contains thousands of 
experiments) for similar gene expression patterns or motifs (called `gene modules’) to a query experiment. The 
program is reasonably fast and usually outputs the exhaustive search results within a minute. The resulted gene 
modules consist of a subset of genes and a subset of experiments. Using the disease and syndrome database, we 
made an exhaustive dictionary of modules by querying with each disease experiment. Through the module 
analysis we find novel relationships between distant diseases that are not previously identified. For example, 
modules found in Down syndrome and Huntington’s disease indicate involvement of cell adhesion molecules in 
both cases, which could suggest common mechanisms of causing the similar phenotypes, neural and muscle 
disorders, observed in the clinical data. 
 
Background 

The number of microarray experiments available in GEO (1) database is growing almost exponentially 
every year. Although such a huge resource of gene expression data is available, few of data mining tools have 
been developed to extract useful biological information so far. The BLAST-like algorithm in the microarray 
field has been expected to appear since the early years of microarray analysis (2) but it has not been realized due 
to its extremely large calculation space. 

In recent years, a new clustering method called biclustering where common gene expression patterns are 
clustered with regard to exhaustive combinations of experiments has been devised and widely studied (3,4, etc.). 
Okada et al have developed the fastest algorithm for exhaustive search of biclusters (5) and successfully 
enumerated the maximal biclusters, or gene modules that demonstrate the highest enrichment of gene function 
sets among five tested software programs in yeast data. 

In this paper, we extend their algorithm to a database search tool as well as further enhance the search 
quality by improving the filtering process of enumerated modules. Using the disease and syndrome microarray 
database, we demonstrate the usefulness of the method by showing that the extracted gene modules correspond 
well to known biological networks. 
 
Mining a database for modules related to a query experiment 

We have developed a heuristic algorithm for extracting exhaustive gene modules that share common 
gene expression 
patterns in both of 
query and database. 
Figure 1 is a 
schematic view of the 
entire process of the 
search. 
 
Figure 1. Schematic 
view of extracting 
gene modules from 
database. Left: the 
gene expression data 
are discretized and 
searched for core 
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(a) Significance distributions of GO and KEGG pathways 
 

(b) Frequencies of significant modules                          
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gene modules by LCM algorithm. Right: modules are merged by incorporating more experiments containing 
noised data. 
 

The details of its algorithm will be published somewhere else thus we will describe a brief outline of the 
scheme in this paper. Firstly, the gene expression values in database and query are transformed to rank orders 
within each experiment. Secondly, rank orders of each gene are further discretized to either of `high’, `low’, and 
`others’ according to the rank order distribution in the database. In this study we assign `highs’ for the top 0.5% 
of rank orders and `lows’ for the bottom 0.5% for each gene. Thirdly, we apply the fastest data mining algorithm 
called ‘Linear time Closed itemset Miner (LCM)’ (6) to extract core gene modules that display exactly the same 
expression patterns between the query and database. Lastly, the core modules are extended to experiment 
direction allowing mismatches of values and merged each other if possible. This merge process effectively 
reduces the number of similar but redundant modules by 20~50% of the initially extracted core modules. 
 
Preparation of normal, cell-line, and disease microarray database 

First, we manually organize normal, cell-line, and disease microarray databases from the provided 
dataset. Then, for each database we performed all-to-all microarray data similarity search by our fast Spearman 
rank correlation search method (7) to eliminate data redundancy and create non-redundant databases. We reduce 
1,290, 1,139, and 3,467 data to 724, 345, and 2,899 for normal, cell-line, and disease databases, respectively. 
For each database, we perform module searches by querying each data using the above method. Hereafter, we 
will focus only on the disease database and describe the analytical results in detail. 

 
Analysis of disease-related database 

The overall statistics of extracted modules searched in disease database by querying each disease data 
are shown in Figure 2. The final numbers of gene expression modules obtained in this method vary depending 
on the query, ranging zero to thousands. Thus, we used only the top 100 modules containing the largest 
experiments for each query for evaluation. To analyze how significantly genes in modules are involved in 
particular biological functions, we compare modules with gene ontology (GO) terms and KEGG pathway maps, 

and calculate the significance of 
function enrichment for each 
module using hyper-geometric 
distribution probability. 

 
 

Figure 2. Statistics of gene 
modules in disease database. The 
top 100 of the largest modules for 
each query are statistically 
examined and shown: (a) their 
modules with probabilities of gene 
function enrichment in GO 
(horizontal axis) and KEGG 
pathway maps (vertical axis); and 
(b) frequencies of queries against 
the ratio of their significant 
modules (p<0.001) in GO (left) 
and KEGG pathway maps (right). 
 
 Statistically, the number 
of significant modules is much 
larger than that of modules 
expected with the random genes  
and is correlated between GO 
terms and KEGG pathways. In 
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this analysis, many of extracted modules tend to represent functionally enrichment in more GO terms than 
KEGG pathway maps. For example, all modules extracted with more than 400 of queries are completely 
matched with GO terms under the threshold (p<0.001), while those with less than 20 queries are completely 
matched with KEGG pathway maps. This is probably due to the differences of gene members in single GO 
terms and KEGG pathway maps; there are only a few to tens of members in single GO terms, while tens to 
hundreds in single KEGG pathway maps, thus it is hard to obtain high significance from KEGG pathway data. 
 
Gene modules from five diseases and their relationships 

To scrutinize the extracted modules, we pick up five diseases, Down syndrome (DS), Huntington’s 
disease (HD), T-ALL (TL), B-ALL (BL), and Myotrophic lateral sclerosis (MLS) from the database and show 
their module numbers before and after merging process, GO and KEGG functional enrichment significances, 
and their few examples of highly significant modules in Table 1. 

 

Disease Name #Core 
Modules 

#After 
Merging 

Ratio of GO 
Significant 

Modules in top 
100 (p<0.001) 

Ratio of KEGG 
Significant 

Modules in top 
100 (p<0.001) 

Examples of Highly Significant 
Modules 

(p<1e-10) 

Down syndrome 211 48 86% 38% 

Cell adhesion, Intermediate 
filament cytoskeleton 
organization and biogenesis, 
Wnt receptor signaling pathway 
through beta-catenin, beta-
catenin binding, striated muscle 
contraction 

Huntington’s 
disease 2031 868 89% 4% 

Ammonium transporter activity, 
prostaglandin biosynthetic 
process 

T-ALL 413 235 48% 4% – 

B-ALL 449 206 60% 4% Prostaglandin E receptor 
activitiy 

Myotrophic lateral 
sclerosis 5385 1452 89% 40% 

Cytosolic small ribosomal 
subunit, structural constituent of 
ribosome, integrin binding, 
sulfonylurea receptor activity, 
Intracellular, GTPase activator 
activity 

Table 1. Five examples of diseases used for queries and their extracted modules. Only the top 100 modules 
containing the largest experiments are tested their gene function enrichment for avoiding spurious modules that 
are little preserved across the experiments. 
 

As shown in these examples, core modules are reduced to 20-50% in size by merging process to 
generate final modules. The ratios of significant modules in GO terms and KEGG pathway maps are 48–89% 
and 4-40%, respectively. Note that as high as 86-89% of tested modules of DS, HD, and MLS are significantly 
matched with GO terms. This percentage is extremely significant because this ratio dramatically decreases when 
gene ids are randomly shuffled within microarray data; for example, 86% of DS decreases to 72% for p<0.001 
and 71% decreases to 23% for p<0.0001 (average in 10 random shuffles). 
 
Overlapping GO terms and KEGG pathways in different diseases 

To detect unknown relationships among diseases we have investigated in overlapping GO terms and 
KEGG pathways between all pairs of five diseases. Under a substantially small threshold of probability (p<1e-6 
for both diseases) we find three GO term overlaps for DS vs. HD, two overlaps for HD vs. BL, TL vs. MLS, and 
BL vs. MLS. We also find one KEGG pathway overlaps for DS vs. BL, and TL vs. MLS. 
 
Cell adhesion molecules involved in both Down syndrome and Huntington’s disease 
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Among overlapping GO terms between different diseases, all of the three GO terms found in both DS 
and HD are related to cell adhesion molecules and the integrin-mediated signaling pathway. According to 
published documents, the cell adhesion molecules called DSCAM (Down syndrome cell adhesion molecule) and 
NCAM (neural cell adhesion molecule) are strongly involved in the neural developments and disorders both in 
DS and HD, respectively (8,9). 
 
Discussion and Conclusion 

Both DSCAM and NCAM are members of the immunoglobulin superfamily cell adhesion molecules 
(IgCAMs) (10). Quite interestingly, DSCAM is also proposed to cause congenital heart disease in DS patients 
(8), while patients of HD develop severe hyperkinetic motor disturbances triggered by yet unknown molecular 
events (9). Taken together, we speculate that NCAM be a possible candidate to cause part of motor disorders in 
HD. 

In this paper, we have shown our novel gene module search method that can enumerate all possible core 
modules with regard to query experiments and tune them by allowing noise. The resulted modules are 
significantly involved in particular GO terms and KEGG pathway maps. Among modules, we find three 
modules that share the common GO terms in two unrelated diseases, DS and HD. Investigating the underlying 
molecular mechanisms, we find that IgCAMs are highly involved in both diseases in terms of neural disorders. 
Thus we conclude that the microarray data mining based on our gene module search with queries is highly 
useful for extracting new links and distant relationships that are currently unrecognized among different diseases. 
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