Increasing interpretability of the relationship between
transcriptome and phenotype through a multivariate function-
based transformation of gene expression data.

Ana Conesa’, Rasmus Bro?, José Manuel Prats®, Karin Kjeldahlz, David Montaner® and
Joaquin Dopazo™.

1 Bioinformatics Deparment, Centro de Investigacion Principe Felipe, Valencia, Spain
3 Quality and Technology Department of Food Science, KVL, Copenhagen, Denmark
4 Department of Statistics, Polytechnic University of Valencia, Valencia, Spain

Abstract

We present here a novel approach to the analysis of transcriptomics data that integrates
functional annotation of gene sets and expression values in a multivariate fashion and directly
assesses the relation of functional features to a multivariate space of response phenotypical
variables. Multivariate projection methods are used to obtain new correlated variables for a
set of genes that share a given function. These new functional variables are then related to the
response variables of interest. The analysis of the principal directions of the multivariate
regression allows for the identification of gene function features correlated with the
phenotype. This approach has demonstrated to be superior to the equivalent univariant
approach.

Introduction

Gene expression profiling is used to study the gene regulatory basis of phenotypic or
developmental characteristics. Statistical analysis of transcriptomics data is normally
addressed through a two step-process: First a statistical test is performed to derive a p-value
for the association of individual gene expression values to the phenotype or experimental
condition(s) [1]. Secondly a number of “significant genes” are selected on the basis of a p-value
threshold. These genes are further analyzed to detect the presence of significant enrichments
in functional categories [2]. Such an approach presents a number of limitations: firstly, the
univariate nature of the gene statistical assessments implies that many informative correlation
structures within the data are ignored and that strong p-value corrections need to be applied
which can hamper the identification of significant features on large datasets. Furthermore, as
functional assessments (which paradoxically depend on multivariant gene activity) are
performed after univariant gene selection, results are dependent on the p-value cutoff of
choice, which can be problematic. Thus, too strict p-value cutoffs may lead to univariately non-
significant genes (that are in fact multivariately significant but remain undetected) while too
non-strict cutoffs may lead to multivariate important features getting lost among irrelevant
information. Finally, when the target phenotype is not composed by a single variable but a
space of different measurements (e.g. age, gender, different clinical parameters, etc.), the
evaluation of differential expression under a univariate strategy can imply multiple and
difficult assessments. Multivariate approaches to gene expression analysis try to overcome the
limitations, e.g. using projection techniques to capture correlations patterns in gene
expression data or evaluations of functionally-related gene-sets ranked by a measure of
differential expression [3, 4]. While these approaches have demonstrated to be more



powerful, they still suffer from limitations regarding considering several variables in the
phenotypical space. In this paper we present a novel approach to the analysis of
transcriptomics data that integrates functional annotation and expression values in a
multivariate fashion and directly assesses the relation of functional features to a multivariate
space of response phenotypical variables.

Material and Methods

Basically, our proposal uses multivariate projection methods to obtain new correlated
variables for a set of genes that share a given function. These new functional variables are then
used to perform a multivariate regression on the response variables. The analysis of the
principal directions of the multivariate regression allows for the identification of gene function
features correlated with the phenotype. An outline of the algorithm is as follows:

Find the functional annotation of the genes in the transcriptomics data set

For each functional term, find all annotated genes and their expression values
Perform PCA on the expression matrix formed by the selected genes

Take a number of components that collect non random variation

Take the PCA scores for these number of components

Collect the scores of all function matrices in a new matrix of functional variables
Use this new matrix to perform PLS regression on the response variables

Explore PLS model and find important functional variables in that model

Use these functional features to explain the gene —regulation basis of the
phenotype

With the above approach, two potentially critical problems can be overcome based on the
assumption that important genes are correlated to similar genes. First of all, the unimportant
genes are dramatically reduced in numbers which can be decisive in order to be able to detect
important variations. Secondly, the important (as well as unimportant) variation is expressed
in a reduced form by scores from principal component analysis. Hence, ideally, each
phenomenon appears only once and therefore has a much better chance of influencing the
further analysis.
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We have tested the method on the dataset by Heijne et al. [5] of a toxicogenomics study on
rats. In this experiment, rats are administrated the drug bromobencen at three different doses
(High, Medium and Low) and blood/urine samples are taken after 6, 24, and 48 hours of
treatment. There are control (no administration) and placebo (only drug vehicle
administration) rat groups. For each experimental condition one to three rats are taken for
gene expression profiling and microarray experiments are done with a dye-swap design. There
is gene expression information for 2665 genes. Data was normalized by lowess and centered
for each dyeswap set. All computations were performed in R, using Limma [6] and plsr
packages.

Additionally, there are measurements for the same rats of physiological and morphological
variables (Body Weight (g), Kidneys weight(g), Kidney/BW (g/kg),Liver (g),Liver/BW , Bilirubin
tot, ASAT, ALAT, LDH, Albumin g/I, ALP (U/l), Creatin umol/Il, Cholesterol (mmol/l), Glucose
(mmol/l), Phospholipids (mmol/l), Triglycerides (mmol/I), Tot.Protein (g/l), Urea (mmol/I, A/G
ratio, GSH corr.(M).

Gene ontology functional annotation was assigned to these genes and the annotation score [7]
was computed for each annotation term using the software blast2go (inclusive analysis). GO
terms with an annotation score and at least four annotated genes were selected as functional
data.



Results

PCA analysis of both gene expression data (Figure 1) and clinical variables (Figure 2) revealed a
first component of variability that basically differentiates the High bromobenze doses
treatment at 24 and 48 hours from the rest of the conditions. A pretty similar PCA score plot
was found for gene expressions and clinical variables, indicating that the major pattern of the
variability in both datasets had similar structures and related to the intensive administration of
the drug.

The GO selection procedure obtained a total of 1140 GO terms from the 3 ontologies were
selected. After PCA-based transformations 343 functional components were obtained
corresponding to 117 different GO terms. Most GO terms generated one or two PCA
components (functional variables) and only a few (high hierarchy GO levels) generated
between 10 and 20 variables. PCA analysis of the new matrix of functional variables shows a
projected space similar to those obtained previously with gene expression and clinical data
(Figure 3), but explained variance for the first , most discriminating, component was clearly
higher (38% with functional variables versus 21% with gene expression data).
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Figure 1. PCA analysis of gene expression data Figure 2. PCA analysis of clinical variables.
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Figure 3. PCA analysis of the new matrix of functional
variables
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Figure 4. Loading plot of the clinical variables on the two
first components of the PLS model



PLS regression was performed predicting one of the clinical variables from the functional data
matrix and the number of components was selected by leave-one-out cross validation,
indicating 5 components which had a Q2 (cross-validation-prediction error) of 0.58. Figure 4
shows the loading plot of the clinical variables on the two first components of the PLS model,
and Figure 5 shows the score plot for the functional data. Table 1 gives the importance value
(VIP) of each clinical variable in the model, showing a most determinant LDH, ALAT, GSH and
ASA and ALP. The score plot of the functional variables shows a slight modification of the
distribution of samples, being the 24 hours HI dose treatment the condition that best
correlates with the clinical variables. The multivariate approach captures a large number of GO
functional terms that are displayed in DAG structure as plotted by the Blast2GO program [7] in
figure 6. Selected GO terms include response to stimulus, heme binding, oxidoreductase
activity, glutathione transferase, apoptosis, terms like apotosis, ribosomal unit and
cytoskeleton.
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Figure 5. Score plot for the functional data

Table 1. Importance value of each clinical

variable in the model

Figure 6. DAG representation of the selected terms



Discussion

The approach presented integrates in one analysis three basic elements of transcriptomic
analysis: gene expression data, functional annotation and phenotype characteristics, providing
a direct correlation of gene function to response variables.

The important clinical and functional variables identified in the study are very much in
agreement with previous analysis of the liver toxicology response: GSH (glutathione) is a
principal player of the detox response by conjugating xenobiotics to be targeted for
degradation. ALA, ASAT and ALP (alkaline phosphatase) are typical indicators of oxidative
stress [5]. At the side of functional terms, the set of functionalities obtained represent the
general molecular response to drug administration: glutathione transferase and
oxidoreductase activities play a role in detoxification. Heme binding is indicative of the activity
of heme oxigenase and cytochromes in the process. Additionally, protein synthesis and
ribosome proliferation are also affected by the cellular stress. Other processes such as changes
in cytoskeleton organization have also been reported and are highlighted by the functional
analysis.

Comparison of the functional analysis approach proposed here to a similar univariate analysis
on the same dataset previously performed by us [8] shows that multivariate methods are more
effective in highlighting relevant gene functions. While the more traditional approach
identified terms belonging to a few GO branches (basically, ribosome and
oxidoreductase/heme activities) (data not shown), the proposed approach showed a more
diverse set of relevant functions. The DAG representation of the selected terms (Figure 6)
shows functional terms distributed in numerous braches of the gene ontology and a various
levels, expanding from high specific (6-7 level) to more general (level 2) that collect selected
terms at higher specificities.
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