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Introduction.  

Chronic fatigue syndrome (CFS) is a neuro-immune disorder linked to chronic 
immune activation [1] and dysregulation of the hypothalamic-pituitary-adrenal (HPA) 
axis [2,3]. For example CFS patients are reported to have significantly fewer 
CD3+/CD25- T cells and significantly more CD20+/CD5+ B cells [4].  In addition 
greater numbers of CD16+/CD3- NK cells are documented albeit with impeded 
cytotoxicity [5]. Upsets in immune demographics are reflected in cell-cell signaling and 
elevated levels of pro-inflammatory cytokines such as INF-α and TNF-α in CFS [6]. The 
HPA axis is central in modulating this inflammatory response through the synthesis of 
cortisol via a cascade involving adrenocorticotropic hormone (ACTH) and corticotropin-
releasing hormone (CRH) [2]. Binding immune cell glucocorticoid receptors, cortisol 
signals a downregulation of pro-inflammatory cytokine production in turn captured by 
cytokine receptors located along the HPA axis [7]. Accordingly HPA axis dynamics are 
tightly coupled with those of the immune system through a variety of feedforward and 
feedback mechanisms. CFS patients inhabit a stable hypocortisolic state [3] highly 
conducive to the emergence of chronic inflammatory immune signaling. On this basis we 
propose that CFS involves not only a modulation but an emergent restructuring of neuro-
immune signaling networks.  

Only recently has CFS been examined from a network perspective [8]. Linear 
correlation of gene sets was used to create undirected graphs in non-fatigued and CFS 
patients from microarray data.  We extend this work in several important ways.  First we 
establish gene sets that are representative of immune cell subset activity enabling 
comparison of results with published flow cytometry findings.  Second we incorporate 
neuro-endocrine data describing HPA and thyroid axis status in the analysis. 
Furthermore, mutual information (MI) rather than Pearson coefficient is used to capture 
nonlinear patterns of association [9]. Finally comparative measures of network topology 
are extended beyond global edit distance to include local measures of node centrality.   
Data.  

Association networks were constructed from the Wichita Clinical dataset [10] using 
neuro-endocrine measurements and gene expression in peripheral blood mononuclear 
cells (PBMC).  A final group of 111 female subjects was obtained by excluding male 
subjects and subjects with confounding medical or psychiatric conditions. Diagnostic 
classification adheres to the CFS research case definition [11] resulting in 39 CFS and 37 
non- fatigued (NF). Collection and processing of PBMCs including microarray 
hybridization are found in [10]. Details of the data preprocessing including 
normalization, outlier detection and false discovery correction are available in [12].   
Methods. 

Gene sets.  Using data from Lyons [13], gene sets were constructed a priori from 
Affymetrix expression profiles of CD4+ T cells, CD8+ T cells, CD19+ B cells, CD14+ 
monocytes and CD16+ neutrophils isolated from peripheral blood.  Of 12,022 genes 



 

2,641 were differentially expressed across cell lines and 268 were present on the Wichita 
study microarrays. Profiles were dissected into discrete non-overlapping sets composed 
of genes at least 2-fold induced or 2-fold repressed preferentially in each lineage.  Sets 
were also defined for NK and regulatory T cells.  Set expression was computed as the 
mean of the Ln-transformed expression of member genes. 

Mutual information networks.  Association networks were constructed using mutual 
information criteria (MI) as implemented in the ARACNe software [9].  The null 
probability of MI values was computed by sub-sampling the data with replacement.  
Networks for each diagnostic class were generated from a consensus of at least 1000 sub-
sampled networks. Indirect associations were removed using data processing inequality 
(DPI).  General topological differences in networks were evaluated using graph edit 
distance [14] generalized for continuously weighted graphs.  Significance of edit distance 
was estimated using equal-sized random networks created by edge shuffling: (i) 
conserving distribution of edge weight [15] and (ii) through multi-graphs conserving 
distribution in node degree [16]. Finally a null distribution was also computed from 
reference networks generated by random sub-sampling of non-fatigued subjects.  
Results.   

Undirected graphs computed for non-fatigued and CFS subject groups are visibly 
different in topology as shown in Figure 1. They are separated by a graph edit distance 
~1.62 which is 83 standard deviations (0.02) above the expected distance between two 
networks constructed from randomly sampled non-fatigued subjects (~0.08).  It is 4 
standard deviations (~0.06) above the expected separation between two multi-graphs 
(~1.38) conserving node degree. However this separation is 5 standard deviations (~0.09) 
below the expected distance separating two naively shuffled networks (~2.07).  The way 
in which this re-modeling occurs at the level of individual nodes is described through 
changes in node degree centrality, a measure of direct node connectivity, and eigenvector 
centrality, a measure of indirect connectivity (Table 1).  Results indicate that immune 
function nodes are most altered in their association with the remainder of the network.  In 
CFS, nodes associated with monocyte, NK cell and T regulatory activity are less 
connected both directly and through their immediate neighbors while nodes associated 
with T cell and neutrophil activity gain in interaction with the environment.  The 
preferentially up-regulated genes in B cells abandon associations and the network shifts 
association towards lymphocyte functions that are preferentially suppressed in B cells.   
Neuropeptide Y also increases in node degree. All differences in node degree centrality 
are at least p<0.01 significant except in the case of estradiol, free testosterone, TSH and 
urine volume.  In terms of eigenvector centrality, nodes for epinephrine and its metabolite 
metanephrin both dramatically increase their sphere of influence in CFS by finding first 
neighbors that are very highly connected.  Eigenvector centrality is also dramatically 
increased in the case of C reactive protein.  Again all changes in eigenvector centrality 
are significant at the p<0.01 level with the exception of creatinine and urinary cortisol.  It 
is interesting to notice that regardless of this restructuring average direct and indirect 
connectivity is virtually conserved between non-fatigued and CFS networks.    
Discussion.    

The reported changes in connectivity of immune functional nodes align well with 
observations of altered immune activity in CFS.  In particular monocytes, neutrophils and 
B cells are known players in chronic inflammation [17].  Neuropeptide Y (NPY) 



 

receptors are present in most immune cells.  Oddly in CFS NPY loses significant 
association with neutrophil activity and aligns instead with C reactive protein (CRP)- an 
acute phase reactant increased dramatically during inflammation. In CFS, the CRP node 
shifts association from monocyte and T regulatory nodes towards NPY and T cell nodes.  
This would suggest an alternate involvement of NPY in the inflammatory process.  
Although immune cell nodes are highly connected hubs and central to both non-fatigued 
and CFS networks direct connections between these nodes were not retained by the 
network identification process. This result indicates that immune cell subsets are more 
strongly associated to the neuroendocrine environment (i.e. cortisol) then they are to one 
another and that immune cell communication occurs principally through intermediaries. 
Further examination of the gene set design and the effects of network pruning with DPI 
are required to fully substantiate this observation.  
Conclusions 

 We have successfully constructed association networks demonstrating the key 
role of immune function in CFS.  Neuroendocrine immune networks differ significantly 
in topology between CFS and controls while being much more closely related than 
random networks. 
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Figure 1. Mutual information networks of association between neuroendocrine measures 
and immune cell gene sets in non-fatigued controls (panel A) and CFS patients (panel B). 



 

Table 1. Immune function nodes alter connectivity.   Details of total weight and total number of edges linked at each node as well 
as edges acquired through first neighbors (Eigenvector centrality). Monocytes and NK cell nodes shed associations while T cell and 
neutrophil nodes acquiring new connections in CFS. Suppressed B cell genes are disavowed while up-regulated genes increase 
interaction with the neuroendocrine environment.  
 

 

Node Name Variable Source
Weighted Node 

Degree
Node Degree 

Ceiling
Eigenvector 
Centrality

Weighted Node 
Degree

Node Degree 
Ceiling

Eigenvector 
Centrality Edges (%)

Edge 
Weight (%)

Monocytes monocyte activity immune 0.19  (0.001) 22.9  (0.10) 0.23  (0.002) 0.13  (0.002) 10.6  (0.22) 0.20  (0.008) -12 -54% -0.03 -13%
DownBCell suppressed B cell activity immune 0.31  (0.002) 22.8  (0.20) 0.44  (0.002) 0.12  (0.003) 12.0  (0.30) 0.20  (0.006) -11 -47% -0.24 -54%
NKcell NK cell activity immune 0.22  (0.001) 19.2  (0.13) 0.29  (0.001) 0.12  (0.002) 13.2  (0.29) 0.16  (0.002) -6 -31% -0.12 -44%
Treg T regulatory activity immune 0.18  (0.001) 18.4  (0.16) 0.23  (0.001) 0.13  (0.002) 13.0  (0.30) 0.20  (0.002) -5 -29% -0.03 -14%
UrineCortisol urine_free_cortisol_24h                 adrenal cortex 0.06  (0.000) 7.0  (0.00) 0.14  (0.001) 0.05  (0.001) 3.6  (0.16) 0.14  (0.004) -3 -49% 0.01 4%
Progest progesterone                             ovaries 0.10  (0.000) 6.0  (0.00) 0.27  (0.002) 0.02  (0.001) 2.9  (0.18) 0.05  (0.003) -3 -52% -0.23 -83%
ACTH adrenocorticotropic hormone         pituitary gland 0.06  (0.000) 6.0  (0.00) 0.14  (0.001) 0.03  (0.002) 3.9  (0.23) 0.07  (0.004) -2 -35% -0.07 -48%
CreatTwentyFour urine creatinine 24h   muscle 0.04  (0.000) 5.0  (0.00) 0.11  (0.001) 0.05  (0.000) 3.0  (0.00) 0.11  (0.002) -2 -40% 0.00 0%
Aldosterone aldosterone                              adrenal cortex 0.04  (0.000) 4.0  (0.00) 0.10  (0.000) 0.02  (0.001) 2.1  (0.10) 0.05  (0.002) -2 -48% -0.05 -51%
Renin plasma renin activity                    adrenal cortex 0.05  (0.000) 5.0  (0.00) 0.12  (0.001) 0.03  (0.001) 3.1  (0.10) 0.08  (0.002) -2 -38% -0.04 -36%
PCTFreeTesto procalcitonin / free testosterone adrenal cortex / gonads 0.05  (0.002) 4.7  (0.15) 0.14  (0.002) 0.03  (0.001) 2.9  (0.18) 0.07  (0.002) -2 -38% -0.08 -53%
Androst androstenedione                          adrenal cortex / gonads 0.06  (0.002) 4.5  (0.17) 0.13  (0.003) 0.04  (0.000) 3.0  (0.00) 0.11  (0.001) -2 -33% -0.03 -20%
Testo testosterone                             adrenal cortex / gonads 0.05  (0.001) 4.9  (0.10) 0.14  (0.002) 0.04  (0.001) 3.9  (0.10) 0.09  (0.002) -1 -20% -0.05 -36%
SHBG sex hormone-binding globulin       liver 0.07  (0.000) 6.0  (0.00) 0.17  (0.001) 0.05  (0.000) 5.0  (0.00) 0.10  (0.001) -1 -17% -0.06 -37%
ThyrFour thyroxin T4                              thyroid gland 0.04  (0.000) 5.0  (0.00) 0.09  (0.001) 0.04  (0.000) 4.0  (0.00) 0.08  (0.001) -1 -20% -0.02 -16%
TriiodoThyrThree triiodothyronine T3                      thyroid gland 0.09  (0.000) 5.0  (0.00) 0.21  (0.001) 0.06  (0.001) 4.4  (0.16) 0.16  (0.004) -1 -12% -0.05 -24%
UrineVol urine volume 24h                         0.07  (0.001) 4.9  (0.10) 0.16  (0.002) 0.06  (0.002) 4.4  (0.22) 0.13  (0.004) -1 -10% -0.03 -20%
Insulin serum insulin                            pancreas 0.05  (0.000) 4.0  (0.00) 0.11  (0.001) 0.04  (0.001) 3.6  (0.16) 0.08  (0.003) 0 -10% -0.03 -25%
Estradiol estradiol                                Adrenal cortex / ovaries 0.05  (0.000) 4.0  (0.00) 0.09  (0.001) 0.03  (0.002) 3.7  (0.15) 0.07  (0.004) 0 -8% -0.02 -18%
TSHicma thyroid-stimulating hormone          anterior pituitary gland 0.06  (0.000) 7.0  (0.00) 0.13  (0.001) 0.06  (0.001) 6.9  (0.10) 0.12  (0.002) 0 -1% -0.01 -9%
DHEAsulph DHEA sulfate                             adrenals 0.05  (0.000) 4.0  (0.00) 0.13  (0.001) 0.04  (0.000) 4.0  (0.00) 0.10  (0.001) 0 0% -0.03 -22%
Metaneph metanephrine                             adrenal medulla 0.05  (0.000) 2.0  (0.00) 0.02  (0.002) 0.07  (0.000) 2.0  (0.00) 0.10  (0.004) 0 0% 0.07 292%
FreeTesto free testosterone                             thyroid gland 0.07  (0.001) 5.8  (0.13) 0.16  (0.002) 0.05  (0.001) 6.0  (0.21) 0.11  (0.004) 0 3% -0.06 -36%
DHEA Dehydroepiandrosterone                adrenals / gonads 0.05  (0.000) 3.0  (0.00) 0.12  (0.001) 0.04  (0.001) 3.4  (0.16) 0.08  (0.006) 0 13% -0.04 -32%
FreeThyrThree free triiodothyronine T3 thyroid gland 0.05  (0.001) 3.3  (0.15) 0.08  (0.004) 0.06  (0.001) 3.8  (0.13) 0.11  (0.005) 1 15% 0.04 47%
Norepi norepinephrine                           Adrenal medulla 0.09  (0.000) 5.0  (0.00) 0.16  (0.002) 0.11  (0.001) 5.8  (0.13) 0.39  (0.007) 1 16% 0.23 142%
FreeThyrFour free thyroxin T4                             Adrenal cortex / gonads 0.04  (0.000) 5.0  (0.00) 0.10  (0.001) 0.07  (0.001) 5.9  (0.10) 0.15  (0.003) 1 18% 0.05 45%
Normetaneph normetanephrine                          Adrenal medulla 0.13  (0.003) 6.9  (0.18) 0.16  (0.005) 0.16  (0.003) 8.2  (0.25) 0.42  (0.008) 1 19% 0.26 164%
RevThyrThree reverse T3                               thyroid gland 0.02  (0.002) 2.3  (0.21) 0.04  (0.006) 0.04  (0.002) 4.1  (0.18) 0.10  (0.007) 2 78% 0.06 158%
Cortisol serum cortisol                           Adrenal cortex 0.05  (0.001) 5.1  (0.10) 0.12  (0.001) 0.07  (0.000) 7.0  (0.00) 0.15  (0.002) 2 37% 0.03 27%
Epineph epinephrine                              Adrenal medulla 0.04  (0.002) 1.9  (0.23) 0.03  (0.006) 0.08  (0.001) 4.4  (0.16) 0.13  (0.006) 3 132% 0.10 386%
CRP C reactive protein                liver 0.02  (0.000) 2.0  (0.00) 0.04  (0.000) 0.06  (0.000) 5.0  (0.00) 0.14  (0.003) 3 150% 0.10 230%
IGFone insulin-like growth factor 1            liver 0.05  (0.000) 4.0  (0.00) 0.14  (0.001) 0.06  (0.000) 7.0  (0.00) 0.12  (0.001) 3 75% -0.01 -11%
Tcell T cell activity Immune 0.13  (0.001) 12.2  (0.13) 0.17  (0.001) 0.17  (0.002) 16.4  (0.22) 0.21  (0.005) 4 34% 0.03 19%
Neutrophils neutrophil activity Immune 0.12  (0.003) 11.5  (0.27) 0.15  (0.004) 0.16  (0.002) 16.2  (0.25) 0.25  (0.006) 5 41% 0.09 60%
NPY neuropeptide Y                            brain 0.12  (0.000) 7.0  (0.00) 0.16  (0.001) 0.18  (0.001) 11.9  (0.10) 0.23  (0.006) 5 70% 0.06 39%
UpBCell Promoted B cell activity Immune 0.09  (0.003) 6.5  (0.17) 0.14  (0.005) 0.17  (0.002) 19.5  (0.27) 0.22  (0.004) 13 200% 0.08 60%
Average 0.08 6.86 0.15 0.07 6.48 0.14 0 0 0 0
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