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ABSTRACT 

Finding genetic biomarkers and a search of genetic-

epidemiological factors, can be formulated as a statistical problem 

of variable selection, where from a large set of candidates a small 

number of trait-associated predictors are identified. We illustrate 

this by analyzing the data available for Chronic Fatigue Syndrome 

(CFS). CFS is a complex disease from several aspects, e.g. 

difficult to diagnose and difficult to quantify. From the clinical 

information subjects were classified in No-Fatigue (NF), 

Insufficient fatigue severity (IFS), Chronic Fatigue (CFS) and 

others. The additional clinical variables were used as stratifying 

factors to homogenize the study population. For identification of 

biomarkers microarray data and SELDI-TOF-based proteomics 

data were used. Genetic marker information for a large number of 

SNPs was also analyzed for an overlapping set of individuals. The 

objectives of the analyses were to identify markers specific to 

Fatigue which are also possibly exclusive to CFS. The WinBUGS 

software was used in implementation and parameter estimation of 

the proposed Bayesian models.   
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1. INTRODUCTION 
Finding genetic biomarkers and a whole-genome search of 

genetic-epidemiological predisposing factors, can both be 

formulated as a statistical problem of variable selection, where 

tiny number of trait-associated predictors (measurements from the 

genome) is selected out from the huge sets of candidates 

(Sillanpää and Bhattacharjee 2005, 2006; Hoti and Sillanpää 

2006). A statistical variable selection plays an important role in 

personalized medicine, in the development of the models to 

predict disease state or drug-response in humans, and it is the first 

step in marker-assisted selection programs in plant and animal 

breeding. Moreover, statistical variable selection methods are also 

essential in different studies of cancer biology, immunogenetics, 

neurogenetics, behavior genetics, toxicology, and 

gastroenterology, which may like to use different crossing designs 

of mouse or rat data (animal models of human disease). In any 

case, the search of for new biomarkers for cancer diagnosis, 

prognosis and measures of response to therapy are already 

providing sufficient motivation for the modern statistical and 

computational work. 

In CAMDA06, we presented a Bayesian joint disease-

marker-expression analysis using data on CFS study 

(Bhattacharjee and Sillanpää 2007). However, full data was not 

utilized in that study. Here we consider the newly available SNP 

data, which is several times larger than the previous one. We also 

incorporate microarray data available from all individuals, unlike 

the previous study where only individuals with both SNP and 

microarray data were studied. Additionally we extend our 

previous work to simultaneously include also intensity at selected 

points, i.e. the mass-to-charge (m/z) values, of the proteomic 

profiles. Unlike SNP or microarray data, it is unclear what these 

peaks are in biological sense, these points could correspond to 

specific peptides or proteins or even mixtures of proteins.  

In other words, we are considering multiple regression 

models where molecular markers and/or gene-expression 

measurements as well as intensity measurements from protein 

spectra serve as predictors for the outcome variable (trait or 

disease state) which is CFS, ISF, etc. Use of such models can be 

motivated, for example, by the search for new biomarkers for 

cancer diagnosis, prognosis and measures of response to therapy. 

Generally, for this we use Bayesian hierarchical modeling and 

Markov Chain Monte Carlo computation. 

2. DATA CONSIDERED 
In our previous analyses (Bhattacharjee & Sillanpää 2006) the 

objective was to form an all encompassing integrated model 

where clinical, SNP and expression data will be used. Thus it 

restricted us to utilize data on 164 individuals on whom all such 

data were available. However we also learned from that analysis 

that only expression showed some effect in joint analysis. 

Generally, it is likely that continuous expression measurements 

contain more information than discrete SNP markers. This 

property may be more noticeable when individual effect sizes are 

very small. Thus it may look like expressions "override" markers, 

even if in reality marker effects are too small to be detectable 

given the size of the current data sets.  

Thus in this analysis we will not attempt to form such an overall 

integrated model for the data, however we intend to provide 



integrated prediction of relevant (bio and genetic) markers for the 

disease based on customized models for individual data types. A 

summary of data used is presented in Table-1 below. 

Table 1. Distribution of subjects according to disease category 

and data availability 

Empiric variable SNP Microarray Proteomics 

NF 58 40 40 

ISF 59 39 42 

CFS 43 39 36 

Others 62 46 46 

Total 222 164 164 

 

2.1 Phenotype data 
The variable “Empiric” was continued to be used as a 

comprehensive summary of the disease phenotype. Based on 

Reeves et al. (2005), variable empiric spans the space very similar 

to the first few principal components extracted from the original 

clinical variables. Therefore this phenotype can be seen as a linear 

combination of clinical variables. The other possible alternate was 

the “Cluster” variable which when compared shows a clear 

relationship with the Empiric-variable.  

In our previous analyses of the CFS data we had utilized 

approximately two dozen clinical variables. These were used, 

mostly for the purpose of homogeneous stratification of the data. 

However other than a few like onset & gender the rest were not 

easily interpretable directly in the context of the disease, hence 

were discontinued for the present analysis. 

2.2 Marker data: 
The complete SNP data was utilized which is altogether available 

on 222 individuals. Altogether there were 168 SNPs on 39 genes, 

which included 123 SNPs pertaining to 29 new genes, 8 new 

SNPS of genes analysed previously and 37 SNPs of original 10 

genes. We noted that 5 SNPs from the old data were discontinued 

in the currently available data set, which unfortunately contains 

one SNP previously found to be significant. 

We obtained location information for both gene-regions (see 

Table-2) and the SNPs within those. This potentially can increase 

inferential powers by using models proposed by Sillanpää and 

Bhattacharjee 2005. Such model accounts for possible 

dependence in behavior between two closely placed SNPs and 

identify dependence structure.  

Table 2. Location information of Gene-regions with SNP data 

Gene Location Gene Location 

HTR6 1p36-p35 DBH 9q34 

IL10 1q31-q32 HTR7 10q21-q24 

HSD11B1 1q32-q41 SLC18A2 10q25 

POMC 2p23.3 BDNF 11p13 

IL1A 2q14 TH 11p15.5 

IL1B 2q14 DRD2 11q23 

HTR2B 2q36.3-q37.1 HTR3A 11q23.1 

DRD3 3q13.3 HTR3B 11q23.1 

SPP1 4q21-q25 TNFRSF1A 12p13.2 

SLC6A3 5p15.3 IFNG 12q14 

Gene Location Gene Location 

HTR1A 5q11.2-q13 TPH2 12q21.1 

IL12B 5q31.1-q33.1 HTR2A 13q14-q21 

NR3C1 5q31.3 SLC6A4 17q11.1-q12 

HTR4 5q31-q33 CRHR1 17q12-q22 

HTR1E 6q14-q15 ACE 17q23.3 

CRHR2 7p15.1 COMT 22q11.21-q11.23 

IL6 7p21 MAOB Xp11.23 

NOS3 7q36 MAOA Xp11.3 

HTR5A 7q36.1 HTR2C Xq24 

INDO 8p12-p11   

2.3 Expression data: 
Of the 177 arrays five were excluded due to non-availability of 

clinical data on these subjects. The remaining 172 arrays included 

8 replicate arrays on 8 subjects. Four such duplicate arrays were 

excluded after carrying out quality check between the two 

replicate arrays on an individual. For the remaining four 

individuals one array each were selected (the ones without “rep” 

in filenames) in order to maintain balance in information. It may 

however be mentioned that the models proposed for expression 

data analysis do not require design to be balanced.  

The resulting 164 arrays were used for further analysis after 

carrying out quality check of the data contained. Of these data 

from 4 arrays were not satisfactory. These data were used 

carefully, for example, summary from the data were used as 

(hyper-)hyper-parameters in the model. While computing these 

summaries the data from the 4 unreliable arrays were not utilized. 

Cutoff intensity was set at 100. Spots were checked for missing 

data and only spots with at least 20 arrays with data for each 

Empiric group (viz. NF, ISF, CFS and Other) were selected for 

analysis. Thus of 20160, only 9953 spots meet this criteria and 

were used. As was done for the SNP data, for microarray data also 

we have gathered additional information in the locations of the 

genes and selected functionalities. 

2.4 Proteomics data: 
We used the pre-processed proteomics data made available on 206 

subjects of which because of high number of missing data we had 

to exclude several and data from 164 subjects were used for 

analysis. This data contains three measurements using three 

ProteinChip Array chemistries: Reversed Phase (H50), Metal 

Affinity Capture (IMAC30) and Weak Cation Exchange (CM10). 

The additional high stringency wash condition was used for the 

CM10, however this method resulted in high degree missingness 

data and hence was excluded from the analysis. Therefore for all 

three array chemistry, washed at lower stringency and two laser 

intensities were used for this analysis. This resulted in 895 m/z 

values (at different fractions) although all of which were not 

distinct. In several cases the same m/z values were observed at 

distinct different fraction, which would mean the pI of these 

proteins is very different although mass could be similar, which 

makes them different proteins. Hence such m/z was treated as 

distinct. The other m/z values that appeared in different array 

types at same fraction were treated as different since we are still 

uncertain about their pI, since from the fractionation policy we 

could only rounghly estimate their pI. 



Whilst SELDI data is ideal for profiling protein expression levels 

to determine patterns of expression that are associated with 

particular disease states (see Laronga et al 2003) it can not be 

used, on its own to identify biomarkers for CFS.  SELDI reports 

only the peptide/protein molecular weights present in the (serum) 

sample.  This approach is flawed on two counts.  1) SELDI 

molecular weights measurements (essentially MALDI-ToF mass 

measurements) are not accurate enough to uniquely identify a 

protein. 2) At present there is not a complete enough knowledge 

of the post-translational modifications that occur e.g. in the 

human body to produce a database of all the masses one would 

expect to find, for example, in serum.  Swiss-Prot goes some way 

towards this by documenting the information known about signal 

sequences and propeptides removed post-translationally.  This 

information is used by our programme of choice for searching for 

proteins of a given mass, ExPasy’s TagIdent, before computing pI 

and Mw for each of the resulting chains.  However, this does not 

address modifications which add to the mass of the protein e.g. 

phosphorylation, glycosylation etc.   

However in absence of any other means to combine this data to 

the rest of the data we used predicted genes corresponding to the 

masses and pI information. These were then used to obtain similar 

annotations as SNP and microarray data. Objective would be to 

assess chromosome region enrichment (genomic overlap) between 

the suggested locations from different analyses as well as 

enrichment for a selected set of functionalities. 

3. STATISTICAL MODELS AND 

ESTIMATION 

3.1 Handling of missing values 
In the association analyses models, we used missing data model 2 

of Sillanpää and Bhattacharjee (2005) to handle missing values in 

the genotype data.  

In case there were values missing in the stratifying variables the 

augmentation was carried out using posterior frequency 

distribution resulting from Uniform-Bernoulli prior assumption 

on the respective distribution. 

For expression analysis the missing values are augmented through 

the integrated model for normalization and differential analysis. 

The augmentation is thus based on information of the location of 

a gene on the array, information about expression behavior of 

other neighboring genes and expression pattern of the same gene 

on other arrays and also overall expression pattern of all 

individual in the relevant treatment group. 

For proteomics data a similar model based data augmentation is 

carried out. 

3.2 Association analysis 
The Bayesian association mapping models utilizes the location 

information of the gene-regions and the SNPs within them. These 

are similar to the one used in Sillanpää and Bhattacharjee (2005), 

where variable selection in the model is based on indicator 

variables controlling inclusion / exclusion of the genetic effects 

from the model. These models were applied to identify CFS 

related SNPs and by analyzing ISF associated SNPs we could 

then additionally identify SNPs specific to CFS but not other 

fatigues as captured by the ISF individuals.  

A Markov-dependence model, similar to Sillanpää and 

Bhattacharjee (2005), was used to describe the dependence 

between the SNPS according to their map distance, a smoothing 

parameter and a stringency parameter describing essentials of the 

model. The shrinkage parameter S can be interpreted as the prior 

probability of selecting a candidate variable (that is, the 

corresponding indicator is one) in the model.  

Stratification of the data using the clinical variable like onset and 

gender were carried out. These were found to be informative in 

our previous analysis and straightforward extension of Sillanpää 

and Bhattacharjee (2005) provided the necessary model setup. 

3.3 Expression analysis 
The normalization was done using the block-level-piecewise-

linear-regression normalization method of Bhattacharjee et al. 

(2004). Therefore for every array and every block parameters 

necessary for carrying out five-piece-connected Bayesian linear 

regression were utilized (assuming known knot-points). All the 

arrays were normalized against the observed average intensities 

over all arrays for each spot. This can also be thought as utilizing 

the data at a hyper-hyper-parameter level, where mean of each 

gene for each disease category (say, µ1
ki ) is drawn from a gene-

specific parameter (say µo
i ) which in turn is described by a 

Normal distribution with given mean as overall sample average. 

This provides some identifiability to the prior distributions 

without influencing the model much (since these are hyper-hyper 

parameters). A joint normalization and expression analysis was 

done, followed by a regularized two sample Bayesian T-test (see. 

Baldi & Long 2001, Lewin et al 2005) to identify relevant genes.  

3.4 Proteomics analysis 
The principal outcome required from this data is very similar 

to that of identifying differentially expressed gene. Hence a 

similar model as above (without the normalization factors) was 

used to analyse this data at a first level. Here also Bayesian t-test 

was used for preliminary identification of differential protein 

masses. Every m/z which is found significant is then feed-in into 

the second-level model (and smoothed if necessary with the mz 

distance). That way if any m/z is only mariginally important it will 

still contribute to the second-level model.  

The peaks in the protein spectra may occur as a real observed 

intensity difference between two groups, disease (CFS) and 

healthy (NF) individuals. However, due to noise, some differential 

peaks may be spurious and occur as a consequence of some other 

factor than the real change in the disease state. Potential reasons 

for spurious peaks include measurement errors and inaccuracies in 

alignment. 

Thus, to control spurious peaks (false signals), the smoothing of 

peaks with respect to neighboring locations has been proposed for 

proteomic profiling (see Du et al. 2006). We present here the new 

smoothing approach based on two-level hierarchical modeling. 

Use of hierarchical modeling to subset selection and for more 

close inspection (special treatment) of most promising candidates 

in genomewide association study context has recently been 

proposed by Chen and Witte (2007). The two-level model is 

considered also here so that the first-level feed in candidates for 

the second-level, where the smoothing of intensity peaks with 

respect to neighboring locations (at the same m/z region) is done 

according to mz distance between the positions (cf. Sillanpää and 



Bhattacharjee 2005). For each m/z ratio, first-level model checks 

if corresponding intensity is marginally differentially expressed 

between CFS & NF (similarly for ISF & NF). In the second level 

model, a logistic regression is performed jointly with all the 

differential peaks using mz distance and smoothing. This way 

multiple signals from same m/z region due to measurement error, 

inaccuracy in alignment, etc will be adjusted and overall signals 

can be identified. Note that in addition of adjusting dependence 

between neighboring mz:s, the joint explanation of mz:s with 

respect to phenotype is also accounted for. These two parts are 

modeled simultaneously in the single hierarchical structure, so in 

different MCMC iteration we would be proposing different sets of 

candidates (m/z values) as differentially expressed. This way we 

can adjust for decision error due to missing values in 

variable/feature selection. 

Although the two-level model will be implemented as one large 

hierarchical structure, actually we want to treat them in some 

extent as two separate model parts. Technically we use "cut" 

function in WinBUGS to stop feedback from second-level model 

to first-level model. The reason for this is that the phenotype data 

is used twice (in both levels of model) and intensity data partly 

twice, which will bias some credible intervals. One interpretation 

of the proposed model is, we are identifying differential m/z:s 

marginally (one at a time, ignoring others) and then in the second-

level model we are adjusting for dependence amongst the closely 

situated mzs and consider their joint explanation with respect to 

phenotype. 

4. RESULTS 

4.1 SNP analyses 
It was noted previously that stratification seemed to improve our 

ability to find associations. It is not uncommon that behind a 

complex disease genetic mechanism may vary across subsets of 

individuals. For example previously when the clinical variable 

“Gender” was used to stratify the data a noticeable association 

was observed for particular SNP with the disease status. 

Unfortunately this particular SNP was discontinued for some 

reason in the present data. However since the current data was 

much larger than the previous one we attempted similar analysis 

to see if there are any other explanation to this disease. Quite 

encouragingly there was much consistency noticed between our 

previous analyses results and those obtained based on the current 

data.  

Since we are able to use distance to model dependence between 

closely situated SNPs in a region we can accurately identify the 

SNP showing most variation in the disease groups. The gene 

region NR3C1 was found to be significant and it continued to be 

so. The SNP found is a different one than the analysis without 

distance, however the magnitude of variation remained quite 

comparable, which is highly significant since now these SNPs are 

identified amongst a much larger group of SNPs selected through 

a harder competition. Similarly the gene region TH was found 

relevant, in fact the same SNP (hCV1843075) showed up in both 

analyses.  

Note that although we are carrying out strata level modeling we 

actually are not losing power when it comes to identifying SNPs 

that could be significant irrespective of strata. In the above 

weighted genetic variances of all SNPs on chromosome 5 is 

plotted for each strata. Note that one particular SNP of NR3C1 

(hCV11159943) highly relevant for both female and male strata 

while discriminating between CFS and NF individuals. As is 

expected we can identify SNPs that are specific to a strata, for 

example, HTR6 on chromosome 1 is highly significant in the male 

strata (see figure 1).  
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Figure 1. Gender-specific effects of SNPs on chromosomes-5 and 

1 in disease-marker association analysis. 

Similarly while comparing ISF-CFS (while also compring with 

NF individuals) we obtained significant SNP discriminating all 

(e.g. HTR2C-hCV339374). However, the mechanism is quite 

different between the two strata, with roles (or frequencies) of the 

alleles reversed in the two strata. For gene BDNF the SNP 

hCV12035465 has only “G” allele in the male strata for 

individuals with CFS, hence this is significant for NF-CFS styady 

in this strata, additionally the G allele proportion in male ISF is 

much lower than male NF population making it also relevant in 

ISF-NF comparison. Note again that behaviour of the SNP is 

opposite in the CFS & ISF cases. Thus, several SNPs were found 

to show the association signals in this analysis.  

4.2 Expression analyses 
Based on gene-expression data analysis as described before, 

several genes were identified as significant strongly. Some of 

these are presented in the following in Table 3.  

Table 3. Genes showing high association with “Empiric” 

variable when analyzed using expression data 

Rank Gene Location Rank Gene Location 

1 TACC2 10q26 11 DRG2 17p11.2 

2 CDK7 5q12.1 12 C10orf48 10p12.1 

3 

PRO185

3 2p22.2 13 SARDH 9q33-q34 

4 PLAT 8p12 14 HSPA1L 6p21.3 

5 EPHB2 1p36.1-p35 15 GNL1 6p21.3 

6 C2orf32 2p14 16 APBA2 15q11-q12 



7 SIRT5 6p23 17 CFLAR 2q33-q34 

8 PURB 7p13 18 NEK6 9q33.3-q34.11 

9 BTK Xq21.33-q22 19 RUNX2 6p21 

10 ZFY Yp11.3 20 PRSS11 10q26.3 

4.3 Proteomics analyses 
The Bayesian t-test of the proteomics data while identifying CFS-

specific m/z values produced some reasonably high but not many 

significant results. A less stringent test obviously picks up more 

bio-markers. In the following a few examples of estimated 

selection probabilities (under stringent tests) are presented for 

different pI values and all m/z values covered in the data (Fig-2). 
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Figure 2. Estimated selection probabilities under stringent tests 

for m/z values, (for pI=3 in top panel and pI=9 in bottom panel). 

4.4 Integrated analyses 
From the proteomics data analysis, using TagIdent software we 

predicted genes for as many possible mz values at relevant pI 

levels as possible using a 10% tolerance level. For each gene we 

now utilize their selection probabilities from SNP, microarray and 

proteomics data analysis. These are then used on the genome level 

to identify possible genes region or functional enrichments. 

5. DISCUSSION 
We have formulated the problem of identifying genetic- and bio- 

markers in the framework of Bayesian variable selection. For each 

individual data type we have utilized advanced modeling 

techniques. These we have implemented on a much larger data 

than before. Wherever comparisons can be made with previous 

findings were done and results were consistent. 

The methodological part of this manuscript contains some novel 

modeling, for example the two stage modeling of the proteomic 

data and also a very similar modeling for the integrated data. The 

integrated analysis thus can reflect uncertainty in analysis of 

individual data sets at the same time provide a comprehensive 

genome/functional level summarization of information in data. 

We have to however admit, that implementing such model has not 

been easy. On standalone computers some of these models take 1 

GB of RAM to run, some of these also take considerable time for 

the MCMC iterations. However we still were able to implement it 

on standard Bayesian software like WinBUGS, enabling us to 

implement numerous modeling options without having to create 

custom codes. This makes this method repeatable on demand as 

often as needed.  
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