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Abstract 
A dataset with 5896 samples consisting of published HG-U133A microarrays was 
analysed. Data quality was assessed with respect to phenotype data, microarray 
quality control parameters, hierarchical clustering and Y-chromosome analysis. 
Phenotype information has substantial deficiencies regarding completeness and data 
coding. There is evidence for a relevant laboratory effect. Even though a highly 
standardized industrial chip platform was used, metaanalysis of this microarray 
dataset is problematic. 
 

1. INTRODUCTION 
The amount of published microarrray data is increasing continuously, which poses 
new opportunities and challenges for data analysis. CAMDA 2007 provided a dataset  
of almost 6000 arrays from one chip platform (Affymetrix GeneChip Human Genome 
HG-U133A). It consists of diseased and normal human samples and cell lines 
collected from ArrayExpress and GEO.  
In this paper we address various aspects of data quality of this dataset - both 
regarding phenotype information and the microarray data itself. 

2. METHODS 
Data was processed using R [1], Bioconductor [2] and SAS [3]. We used a debian 
linux system with 64 GB Ram and 4 dual-core processors. 
Phenotype information was analysed with frequency tables and manual curation. 
Bioconductor routines were applied to calculate Affymetrix quality parameters, in 
particular  percentage of present calls and 3' to 5' ratio (AFFX-HSAC07/X00351). A 
low present call rate may indicate limited chip quality, but also depends on tissue 
properties. High 3' to 5' ratios refer to low RNA quality (commonly used threshold 
value: 3). 
Hierarchical clustering was performed with R-routines using average linkage and 
euclidean distance. 
To analyse gene expression on the Y-chromosome, we selected 33 probesets (x_at 
and s_at-probesets were omitted). We calculated t-statistics male versus female for 
these probesets and selected the probeset with highest t-value. 
Differential genes were determined with multtest package from Bioconductor. 
We further analyzed the identified differential genes by investigating a possible 
laboratory effect of the documented gene expression. Because explicit laboratory 
information was not available, we used experiment information instead. Analysis of 
variance models were set up, including the laboratory originating a certain sample as 
a fixed effect. We calculated adjusted R-square values of the fitted models in order to 
quantify the percentage of variation of gene expression that is explained by the 
laboratory. Analyses were performed separately for each gene and for the subgroup 
of normal and tumor tissue samples, respectively. 
 



3. RESULTS 

Analysis of phenotype 
Overall, the dataset comprises 5896 samples from 252 experiments. The number of 
samples per experiment has a skewed distribution with an average of 23.4 samples 
and a median of 8. There are 1142 cell line samples and 4754 organism part     
samples. Cell type is missing for 4419 samples and has 121 different categories; 
distribution of cell type is skewed with an average of 12.2 samples per cell type and a 
median of 3. 
Disease state is missing for 1868 samples and has 193 textual categories with a 
skewed distribution (average 20.9 samples per category, median 8). In addition, 
many of these categories are (partially) synonymous. For instance, there are 8 
different texts for "breast cancer" like "breast tumor" or "breast carcinoma". By 
manual curation, consolidated categories for normal, tumor, leukemia, breast cancer 
and colon cancer were established. Disease stage is missing for 4932 samples and 
has 17 categories with a skewed distribution (mean 56.7, median 16 samples per 
category). 
Developmental stage is missing for 5095 samples. BioSource type is missing in 2809 
samples and has 12, partially synonymous categories. There are 97 different cell 
lines with a skewed distribution of categories (mean 11.8, median 5 samples per cell 
line). 
Gender is missing for 4221 samples and has 7 (!) categories. Organism part is 
missing in 3056 samples and has 190 categories (most frequent: bone marrow with 
607 samples). 

Microarray quality control parameters 
Figure 1 presents percentage of present calls and 3' to 5' ratio for each microarray by 
size of experiment. It becomes evident that there is a substantial variability of these 
quality parameters within the dataset. In addition, there appears to be less variability 
and better overall values of quality parameters (= high percentage of present calls 
and low 3' to 5' ratios) in larger experiments. 
 

  
Figure 1: percentage present call and 3' to 5' ratio by size of experiment 
 



Hierarchical clustering 
Hierarchical clustering with color-coding of samples belonging to the same 
experiment revealed that many samples are clustered by experiment. Inspection of 
the distance matrix revealed that there are duplicate samples in the dataset (distance 
0). We identified 498 duplicated samples. Interestingly, within these duplicates we 
found cel-files with identical content but different file name. 

Y-chromosome analysis 
From available probesets located on the Y-chromosome we selected 205000_at, 
because it was most differentially expressed between males and females according 
to a t-statistic criterion. Figure 2 shows frequency distribution for males (n=907) and 
females (n=424) for this probeset. There are 32 of 424 females with expression level 
above 4, even though they are supposed to have no Y-chromosome. 
 

 
Figure 2: Histogram of Y-chromosome expression (205000_at) 
 

Tumor signature 
To estimate the order of magnitude of a laboratory effect, we performed the following 
analysis: We removed duplicate samples from the dataset and defined by manual 
curation a "tumor" and a "normal" group of samples, because most diseases in the 
dataset are various types of tumors. 2335 samples could be assigned to tumor. Only 
83 non-duplicated samples were annotated as "normal" or "healthy", therefore 
samples without disease annotation were considered normal. We excluded all cell 
lines from "normal", because many cell lines are tumor cell lines. By this approach 
1160 samples were assigned normal. 
Using Bioconductors multtest we determined differential genes tumor versus normal. 
By ANOVA analysis we estimated the explained variance by the laboratory for 
differential genes. Table 1 presents adjusted R-square values of one-factorial 
ANOVA models investigating the laboratory effect for top 10 differential genes. The 
factor laboratory explains at least 60% of variance in normal samples. The 
corresponding values of tumor tissue were lower by about 10 percentage points. 
Presumably this is due to a higher amout of variation among tumor tissue samples, 
that results from different tumor entities included. Normal tissue samples appear to 
be more homogeneous. 
 



Adjusted R2  Tumor Normal 
201417_at 0.5681464 0.6234135 
213668_s_at 0.5480438 0.6587130 
210719_s_at 0.5719505 0.6030735 
213491_x_at 0.4805231 0.6227067 
212115_at 0.6684609 0.6602535 
203462_x_at 0.4515008 0.6023647 
213399_x_at 0.5003343 0.6225354 
201416_at 0.6475034 0.7435285 
208688_x_at 0.4218399 0.6366382 
208650_s_at 0.5651868 0.6053727 
 
Table 1: Adjusted R-square values of one-factorial ANOVA models including the 
laboratory effect for top 10 differential genes 

4. DISCUSSION 
The available phenotype information for the META-analysis dataset  has major 
deficiencies, in particular many missing values and non-coded information. Missing 
gender information in 71.5% of cases and 7 categories for gender highlights the need 
for data monitoring to improve data quality. 
Free text description of diseases apparently is not suited for large-scale datasets: 
There are 193 textual categories for diseases with many synonyms, for instance 8 
different texts for breast cancer, and many ambiguous terms (e.g. colorectal tumor: 
benign or cancer?). 
From an analysis perspective, precise disease classification is needed. International 
coding schemes like international classification of diseases (ICD [4]) should be 
applied. In addition, disease and stage of each disease should be clearly separated. 
For instance, lung adenocarcinoma is listed as 4 different disease entities, 
corresponding to stage I to IV. Frequencies of several item categories are highly 
skewed; this restricts data analysis. Again, coded data values based on established 
classifications instead of free text would be helpful to enable merging of similar 
categories or exclusion of samples.  
All experiments used the same chip type and presumably followed manufacturer's 
instructions. However, analysis of quality control parameters like percentage present 
calls and 3' to 5' ratio revealed substantial variability. This can be attributed to the 
diversity of biological samples as well as differences between laboratories. There 
seems to be a trend that experiments with larger sample sizes have better QC 
parameters. 
Y-chromosome analysis also  sheds some light on data quality issues. Even for such 
clear cut questions like "patient has Y-chromosome - yes or no?" there is no easy 
answer. There are more than 30 probesets for Y-chromsomal genes on the HG-
U133A chip. Some of them are almost not differentially expressed between males 
and females (data not shown), but even when selecting the most discriminative 
probeset regarding gender, there is a relevant discordance with gender information. 
This might be a chip problem or a phenotyping problem and should be subject to 
additional validation. 
From a medical viewpoint, our tumor signature is very probably invalid, because 
different tumor entities are not represented proportionally within the dataset. 
Controlled studies are needed to establish such tumor signatures ([5],[6]). A sufficient 
number of valid control samples is important for data analysis. Duplication and 



multiple usage of the same cel-file is probably not a valid approach - at least it must 
be transparent to the user. 
The aim of our heuristic approach was to estimate the order of magnitude of the 
laboratory effect. Consistent with hierarchical cluster analysis, the laboratory effect 
seems to be relevant even for a highly standardized industrial chip platform and 
therefore should not be ignored. Tissue type may be a confounder of laboratory 
effect and experiment effect, but unfortunately could not be entered into the model 
due to insufficient phenotype coding. 
Overall, data quality both with respect to phenotype information and microarray data 
remains an important issue, in particular when we aim to combine results from 
different microarray experiments. 
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