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WHAT IS CAMDA?

CAMDA (1,2) was founded to provide a forum to critically assess different techniques 
used in microarray data analysis. It aims to establish the state-of-the-art in microarray 
data analysis, as well as identify progress and highlight promising directions for future 
efforts. In order to achieve these goals, CAMDA adopted the approach of community-wide 
experiment,  letting  the  scientific  community  analyse  the  same  contest  data  sets. 
Researchers worldwide are invited to take the CAMDA challenge. Accepted contributinos 
are presented in short talks (25 mins),  and the results of  analysis are discussed and 
compared  at  the  CAMDA  conference.  Posters  provide  an  additional  opportunity  of 
presenting and discussing work. As a special opportunity, this year, a selection of analysis 
predictions will also be verified experimentally by the laboratory collecting the original 
contest data set. 
CAMDA, which began in 2000, was initiated by Simon Lin and Kimberly Johnson from 
the Duke University Bioinformatics Shared Resource. It is patterned after the molecular 
modeling  community’s  well-known CASP  (3) experiment.  In  this  sense,  CAMDA is  a 
functional  genomics  successor  of  the  other  well-known  community-wide  experiments, 
such as  GASP  (4) in  genomics,  CASP  (3) in  protein modeling,  GAW  (5) in statistical 
genetics, and PTC (6) in computational toxicology. 
The first CAMDA conference (CAMDA'00) was held December 18–19, 2000. Attended by 
250 biologists, statisticians, computer scientists and mathematicians from 7 countries, 
the  conference  truly brought  together  the  major  players  in  this  field.  Since  then the 
CAMDA  conference  has  grown  stronger  and  more  exciting,  and  has  regularly  been 
featured in top journals such as the Nature (1,2) and a recent Nature Methods editorial 
(7). Come join this exciting conference! 
In 2006 it was decided that CAMDA would become a roving conference. This new period 
begins with  Camda 2007, organised by Joaquin Dopazo at the  CIPF in Spain, the first 
stop in the forecoming years of international roving. This year, Boku University will host 
CAMDA in Vienna, Austria. 
All individuals and groups from both academic and commercial entities are invited to join 
the award competition. 

1. Johnson, K.F. and Lin, S.M. (2001). Call to work together on microarray data analysis. Nature 411, 885.
2. Tilstone, C. (2003) Vital Statistics. Nature 424, 610
3. CASP: Critical Assessment of Techniques for Protein Structure Prediction. http://predictioncenter.llnl.gov
4. GASP: Genome Annotation Assessment Project. http://www.fruitfly.org/GASP1
5. GAW: Genetic Analysis Workshop. http://www.sfbr.org/gaw/
6. C. Helma, R. D. King, S. Kramer, and A. Srinivasan (2001). The Predictive Toxicology Challenge 2000–-2001. 
Bioinformatics 17, 107.
7. (2008) Going for algorithm gold, Nature Methods 5, 569. (link to journal)



CONTEST DATASETS
Primary dataset
The  laboratories  of  Prof.  Cristin  Print  and  collaborators  make  available  raw  and 
processed data from a small microarray gene expression time-course experiment that is 
typical of gene expression time-course data sets yet provides an unusual opportunity for 
pushing the performance of analysis methods. 
The  experiment  recorded the  response  of  human vascular  endothelial  cells  to  serum 
withdrawal,  triggering apoptosis.  Apoptosis  is  known to be a major process  for tissue 
remodelling during development and homeostasis in the adult, and also has a central role 
in many diseases. An initial, preliminary analysis and discussion of this data set has been 
published (1) and provides a good introduction to the biological background and context of 
the experiment. 
The data set is typical in that a complex biological phenomenon is probed by a timecourse 
with only a few measurements, in this case 8 time-points and 3 replicate pools of cells 
from 10 distinct individuals each. It thus provides the  classical challenge of microarray  
data analysis of extracting insight in a data space of very uneven dimensionalities, in this 
case  20k  variables  x  (8×3)  measurements.  Also,  a  large  number  of  independent 
experiments  and  established  knowledge  is  available  regarding  apoptosis.  Taking 
advantage of such external information for inference is again a typical challenge of the 
field. 
The experiment is  unusual, however, in that by design its focus is on detecting possible 
early causes. The challenge hence is rather to  identify candidate regulators rather 
than primarily their targets by concentrating on very early time-points. We believe that 
this type of challenge will become a more and more central task for microarray analysis, 
particularly  when  considering  the  platform's  strength  in  detecting  low-copy-number  
molecules, such as transcription factors, that potentially drive later transcriptional events. 
The development of improved algorithms in this area will therefore continue to grow in 
relevance.  The  performance  of  new  algorithms,  however,  is  hard  to  assess  without 
additional  laboratory  experiments.  As  part  of  every  year's  analysis  challenge,  the 
Program Committee will vote for the most interesting analysis. For this contest, Prof. 
Print's  laboratory  has  kindly  offered  to  experimentally  test  predictions by  siRNA 
knock-down of the most promising candidates emerging (with a budget for costs of  5–
10kNZ$).  Together  with the experimental  design  this  offers  a  special  opportunity  for  
developing and testing novel integrative algorithms for the detection of regulatory factors  
from typical (small) time-course data sets and available external knowledge. 

(1) Affara M, Dunmore B, Savoie C, Imoto S, Tamada Y, Araki H, Charnock-Jones D.S, Miyano S, Print C. 
(2007) 'Understanding endothelial cell apoptosis: what can the transcriptome glycome and proteome reveal?' 
Phil. Trans. R. Soc. B. 362, 1469–-87.



Emerald dataset :  A Microarray Experiment to Study the Relative Magnitudes 
of Technical and Biological Variation 
Microarray science and technology has progressed to the point at which careful  work 
yields  reliable  measurements.  There  is  a  growing  understanding  of  the  sources  of 
variability  in  microarray  experiments,  and  ways  to  control  that  variability  are 
propagating.  In  part  because  the  technical  variability  observed  in  contemporary 
microarray experiments has become better controlled, statistically significant lab-to-lab 
and batch-to-batch effects have been observed. A number of experiments which study the 
same samples  across  a  variety  of  laboratories  and platforms have reported this.  The 
essential question is whether these effects are significant with respect to the biological 
variability observed amongst the samples. This question lies at the heart of establishing 
the fitness for purpose of microarrays for biological studies. 
We have  data  available  produced  by  three  different  laboratories  measuring  the  same  
samples on three different platforms – each with their own  batch factors (Liggett  et al., 
2008). The platforms are the Affymetrix Rat Genome 230 2.0 array, the Illumina RatRef-
12 array, and the Agilent Whole Rat Genome array. The samples are a titration mixture of 
RNA isolated from kidney and liver, from 6 different normal control rats from an earlier 
experiment at Novartis. This titration presents a series of 4 samples from each rat: RNA 
from the kidney, a mixture of 75% RNA from kidney and 25% from liver, a mixture of 25% 
RNA from kidney and 75% from liver,  and  RNA from the liver.  These  samples  were 
measured in replicate, for each animal. Pooled samples from the various animals were 
also measured, for a nominal 96 arrays from each platform. 
The relationship amongst these samples enables model-based analysis,  amongst other 
approaches. Model-based approaches can be compelling because they permit observation 
and  apportionment  of  variation  in  the  residuals.  The  titration  samples  present 
interesting opportunities for alternative analyses as well, with the titration fraction as a 
surrogate or proxy for RNA concentration. 
A particular interest for this CAMDA dataset is its use for evaluating the performance of 
different  preprocessing  approaches  and  techniques.  We encourage research  groups  to 
address  this  question.  Assessment  using  a  model-based  approach  might  enable 
estimation of any bias that might be introduced in preprocessing. Such estimates would, 
for the first time, provide valuable quantitative insight to enable the microarray data 
analysis community to make appropriate compromises when selecting a preprocessing 
pipeline. 

(2)  Ligget  W,  Peterson  R,  Salit  M.  (2008)  'Technical  vis-à-vis  biological  variation  in  gene  expression 
measurements', preprint.





INFORMATION

Location
The conference is held at the Muthgasse institutes of Boku University Vienna, in fast and 
easy reach by public transport (e.g.,  tube U4 Heiligenstadt)  or car from the city.  The 
institute address is AT-1190 Muthgasse 18, and meetings will be held in the lecture room 
XXI on the ground floor of the main buildings.

See and do
The city of Vienna is renowned for its beauty, culture, and high general quality of life, so 
do plan a longer stop if you can take some time out! A lot of information is provided in the 
information pack in your bag or online at http://www.wien.gv.at/english/.
There will be a social programme featuring highlights such as a cocktail reception at the 
world-famous  City Hall including live music and generous buffet dinner in the  Senate 
Chamber. We will also organize a visit to a Heuriger style pub.
We wish you a lovely stay in Vienna and hope you can take the time to explore the city 
and the stunning countryside that is in easy reach! 

Public transport / tickets
Vienna has an excellent public transport system. Many hotels sell tickets at reception, 
else they are available from machines in all tube stations and on many tram stations. 
These accept banknotes and credit cards. You will need to get a ticket before boarding a 
train. While you can buy tickets in trams and busses, they are more expensive than when 
you get a ticket before boarding. 
Perhaps of interest, if you are interested in sight-seeing and museums, for €18.50, there 
is the `Vienna card´ for tourists, which entitles you to 72h of unrestricted public transport 
and serves as a discount pass to many museums, as well as several other attractions and 
restaurants. 
If you are staying longer or are travelling in company, then the `8 day-tickets´ carnet is 
interesting.  Note that  this  is  not  an “8-day ticket”  but rather allows you to  use up 8 
individual `day-tickets´ as you go, and even share the carnet amongst people. So, if you 
are travelling with a partner, say, you could insert two segments of the ticket into the 
validation machine, which will entitle two people to unrestricted travel for the day. It 
costs €27.20 and at €3.40 per day is the cheapest option as soon as you make at least two 
trips per day (which you almost certainly will). 
Lastly, there are 72h/48h/24h and single-trip tickets priced at €13.60/€10.00/€5.70 and 
€1.70. 



PROGRAM

Thursday, 4 Dec.
16.00 - 17.00 Registration 
17.00 - 17.15 Welcome address 
17.15 - 18.15 Keynote,  ‘Towards  cracking  the  code  of  transcription  and  chromatin 

regulation’, Eran Segal, Weizmann Institute, Israel. 
18.15 - 18.45 ‘Analysis  of  comparative  genomic  hybridization  and  SNP arrays  for  the 

detection of chromosomal aberrations in single cells’, Peter Konings, et al., 
Katholieke Universiteit Leuven, Belgium. 

20.00 - late Cocktail reception / dinner, City Hall (Rathaus), Senate Chamber 

Friday, 5 Dec. – Emerald sessions
09.00 - 09.30 Introduction to the  Emerald dataset, Ron Peterson,  Novartis Institute of 

Biomedical Research, Cambridge, Massachusetts, U.S.A. 
09:30 - 10:15 Keynote, ‘Muddling of modelling your way through normalization?’, Ernst 

Wit, University of Groningen, The Netherlands. 
10.15 - 10.35 Coffee / Poster session
10.35 - 11.20 ‘Metrology  for  Gene  Expression:  Measurement  Batch  Effects,  Probe 

Sensitivity, Gene-List Reproducibility’, Walter Liggett, NIST, Gaithersburg, 
Maryland, U.S.A. 

11:20 - 11:50 ‘Intrinsic metrics for hybridization control and global expression profiling – 
the fruit fly developmental time series’,  Hans Binder, Mario Fasold, and 
Jan Brücker, IZBI, Universität Leipzig, Germany. 

11:50 - 12:10 ‘Experiment quality – direct route to reliable data’, Ralph Beneke,  Tecan 
Austria. 

12:10 - 13:30 Lunch 
13:30 - 14:15 Keynote,  ‘An  array  of  FDA efforts  in  pharmacogenomics’,  Weida  Tong, 

MAQC consortium, Toxicoinformatics, FDA, Jefferson, Arizona, U.S.A. 
14:15 - 14:45 ‘Identification of spatial biases in Affymetrix oligonucleotide microarrays’, 

Jose Manuel Arteaga-Salas, et al., BEAMS, University of Essex, Colchester, 
U.K. 

14:45 - 15:15 ‘EMERALD  microarray  platform  comparison  based  on  hypothesis  tests 
under  order  restrictions’,  Florian  Klinglmüller  and  Thomas  Tuechler, 
Department of Statistics and Probability Theory, University of Technology 
Vienna, Austria. 



15:15 - 15:45 Coffee / Poster session
15:45 - 16:15 ‘Exploiting  the  EMERALD  mixture  design  for  model  based  microarray 

platform  comparisons  by  Bayesian  inference  of  technical  and  biological 
variance  components’.  Thomas  Tuechler,  et  al.,  Chair  of  Bioinformatics, 
Boku University Vienna, Austria. 

16:15 - 16:45 ‘Progress on transformation and normalization ontology’,  James Malone, 
European Bioinformatics Institute (EMBL-EBI), Cambridge, U.K. 

16.45 -17.15 Panel discussion 
19.00 - late Dinner in a typical local ‘heuriger’ style restaurant in town (optional) 

Saturday, 6 Dec.
09.00 - 09.45 Keynote, ‘Multiple Testing on the Graph of Gene Ontology’, Jelle Goeman, 

Leiden University Medical Center, The Netherlands. 
09.45 - 10.15 ‘Effect  of  Single  Nucleotide  Polymorphism  (SNP)  in  Affymetrix  probes’, 

Olivia  Sanchez-Graillet,  William  B.  Langdon,  and  Andrew  Harrison, 
BEAMS, University of Essex, Colchester, U.K. 

10.15 - 10.45 ‘Extending pathways with inferred regulatory interactions from microarray 
data and protein domain signatures’,  Tim Beissbarth,  Molecular Genome 
Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany. 

10.45 - 11.15 Coffee / Poster session
11.15 - 11.45 ‘Modeling of microarray time-course data with dynamic Bayesian networks 

and within-time-point interaction’, Brian Godsey and Peter Sykacek. Chair 
of Bioinformatics, Boku University Vienna, Austria. 

11.45 - 12.15 ‘Inference of Key Transcriptional Regulators in Endothelial Cell Apoptosis 
using Bayesian State Space Models’, David Wild, Claudia Rangel-Escareno, 
and Irma Aguilar-Delfin, Systems Biology Centre, University of Warwick, 
U.K. 

12.15 - 12.30 Closing words 

There social programme includes a cocktail reception at the world-famous new-gothic City 
Hall,  complete  with a  generous buffet  dinner  in  the  Senate  Chamber  and  live  piano 
music.  We  will  also  arrange  an  optional  trip  to  a  local  Heuriger country  style 
restaurant/pub.





TALKS





Keynote

Towards  cracking  the  code  of  transcription  and  chromatin 
regulation
Eran Segal, Weizmann Institute, Israel

The detailed positions of nucleosomes profoundly impact gene regulation and are partly 
encoded by the genomic  DNA sequence.  However,  less  is  known about  the functional 
consequences of  this encoding. We address this question using a genome-wide map of 
millions of  yeast nucleosomes that  we sequenced.  Utilizing the high resolution of  our 
map, we refine our understanding of how nucleosome organizations are encoded by the 
DNA sequence, and demonstrate that the genomic sequence is highly predictive of the in 
vivo  nucleosome  organization,  even  across  new  nucleosome-bound  sequences  that  we 
isolated  from  fly  and  human.  We  find  that  Poly(dA:dT)  tracts  are  an  important 
component of these nucleosome positioning signals, and that their nucleosome-disfavoring 
action results in large nucleosome-depletion over them and over their flanking regions, 
and enhances the accessibility of transcription factors to their cognate sites. Our results 
suggest  that  the  yeast  genome  may  utilize  these  nucleosome  positioning  signals  to 
regulate gene expression with different transcriptional noise and activation kinetics, and 
DNA replication with different origin efficiency. These distinct functions may be achieved 
by  encoding  both  relatively  closed  (nucleosome-covered)  chromatin  organizations  over 
some factor binding sites, where factors must compete with nucleosomes for DNA access, 
and relatively open (nucleosome-depleted)  organizations  over other factor sites,  where 
factors bind without competition.



Analysis of comparative genomic hybridization and SNP arrays 
for the detection of chromosomal aberrations in single cells
Peter Konings1, Evelyne Vanneste2,3,7, Thierry Voet2,7, Cédric Le Caignec2,*, Michèle Ampe4, Cindy 
Melotte2, Sophie Debrock3, Mustapha Amyere5, Miikka Vikkula5, Frans Schuit6, Jean-Pierre Fryns2, 
Geert Verbeke4, Thomas D’Hooghe3, Joris R Vermeesch2 & Yves Moreau1

1ESAT-SISTA, K.U.Leuven, Leuven, Belgium.
2Center for Human Genetics (CME), K.U.Leuven, Leuven, Belgium.
3Leuven University Fertility Center (LUFC), University Hospital Gasthuisberg, Leuven, Belgium.
4Biostatistical Center, K.U.Leuven, Leuven, Belgium.
5de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
6Molecular Cell Biology, Gene Expression Group, University Hospital Gasthuisberg, Leuven, Belgium.
*Present addresses: Service de Génétique Medicale, Centre Hospitalier Universitaire, Nantes, France; 
INSERM, U915, Nantes, France; Université de Nantes, Faculté de Médecine, l’Institut du Thorax, 
Nantes, France
Correspondence should be addressed to Peter Konings and Yves Moreau, ESAT-SISTA, K.U. Leuven, 
Kasteelpark Arenberg 10, 3001 Leuven, Belgium.

Genomic arrays, including Comparative Genomic arrays and SNP arrays, enable the 
detection of genetic variation among individuals or among cell populations. Thanks 
to the high reproducibility  of  measurements of  DNA levels  (by contrast to  RNA 
levels), genomic arrays have emerged as a highly effective application of microarray 
technology in oncology and in genetics of both congenital and complex disorders. A 
major  emerging  challenge  for  genomic  arrays  is  genotyping  and  copy  number 
determination  using  genomic  content  from a  SINGLE cell.  This  capability  is  of 
interest in several situations where mosaicism (genetic variability at the cellular 
level) is present, such as in certain types of cancer and in embryonic development. 
Recently,  we  have  developed  experimental  methods  to  amplify  single-cell  DNA 
content and present here analysis strategies to determine the copy number status of 
single cells in early embryos, using both in-house arrays of genomic clones (BAC) 
and Affymetrix 250K GeneChip SNP arrays. One of  the major challenges is  the 
amount of noise and bias that is introduced by the amplification step. A mixture 
model was developed to detect copy number variation using the BAC array, while 
correcting for amplification bias. Results from the BAC array were combined with 
those  from  the  CNAG  and  CNAT  tools  on  the  SNP  array,  showing  a  high 
concordance. Astonishingly, our analysis revealed chromosomal imbalances in about 
90% of embryos obtained from couples with normal fertility. The observation of such 
a high level of genomic instability in early embryos has significant implications for 
our understanding of embryonic development and for clinical applications of genetic 
screening.



Keynote

Muddling or modelling your way through normalization?
Ernst Wit, University of Groningen, Netherlands

Preprocessing is  typically thought of  a "data cleaning" activity,  separate from further 
inference. There are obvious advantages to this view: this way, the analyst does can apply 
an array of methods to the "cleaned" data, without every time having to worry about 
possible  artifacts.  However,  for  some  standard  tasks,  such  as  detecting  differential 
expression, a joint model belongs to the possibilities. Moreover, the particular structure of 
the CAMDA dataset this year lends itself particularly to modelling different aspects via a 
mixed effects model.



Metrology  for  Gene  Expression:  Measurement  Batch 
Effects, Probe Sensitivity, Gene-List Reproducibility
Walter Liggett, National Institute of Standards and Technology
Jean Lozach, Illumina
Anne Bergstrom Lucas, Agilent
Ron Peterson
Marc Salit, National Institute of Standards and Technology
Danielle Thierry-Mieg, National Center for Biotechnology Information, NIH
Jean Thierry-Mieg, National Center for Biotechnology Information, NIH
Russ Wolfinger, SAS

As for  other  measurements,  metrology  for  gene  expression  involves  issues 
such  as  sources  of  measurement  variation,  measurement  calibration,  and 
inference on comparisons.  Insight into these issues in the highly multiplexed 
case  of  gene  expression  measurement  is  possible  on  the  basis  of  the 
EMERALD dataset of CAMDA08.  This dataset contains measurements on 
the RNA of six animals (rattus norvegicus) made with Affymetrix, Agilent, 
and Illumina platforms.  For each animal, there are replicate measurements 
on the liver RNA, the kidney RNA, and mixtures of these two RNAs.

We have obtained insight into the relative size of measurement batch effects 
and biological variation as represented by the animal-to-animal differences. 
These differences provide a practical benchmark because the animals were all 
subject to the same control-group treatment.

Although calibration curves for individual probes are unknown, insight into 
calibration can be obtained from a platform-to-platform correspondence that 
identifies  probes  that  measure  the  same  transcript.   This  identification 
allows insight into the relative sensitivity of probes from different platforms.

For  biologists,  gene  expression  microarrays  provide  an  approach  to 
identifying  genes with particular  properties  such as  change  in  expression 
with experimental treatment.  The genes thus identified populate a gene list. 
In simple case-control studies, there are individuals in two groups that are 
each  subject  to  a  different  experimental  treatment.   Because  each  group 
separately  exhibits  biological  variation,  the identification criterion usually 



involves a statistical test of the null hypothesis that the difference between 
the groups  is  solely  the result  of  this  biological  variation.   A  gene list  is 
obtained by applying this statistical  test  to the measurement set for each 
gene.  Because we have measurements on six animals, we can obtain insight 
into such gene lists.

We  have  obtained  some  general  observations  on  the  metrology  issues 
considered.  First, although the animal-to-animal variation is generally larger 
than  the  measurement  batch  effects,  our  measurements  do  lead  to  the 
conclusion that these effects should not be ignored in experimental design 
and analysis.  It is moreover the case that the measurement batch effects 
might be larger in a different experiment.  Second, over the set of transcripts 
for which liver expression is appreciably different from kidney expression, no 
platform is undeniably more sensitive than another.  However, the difference 
in  probe  sensitivity  between  two  platforms  varies  appreciably  from 
transcript-to-transcript.  That is, one platform seems more sensitive for some 
transcripts, and the other platform more sensitive for other transcripts.  This 
observation suggests considerations in the interpretation of single-platform 
studies.  Third, we find that gene list reproducibility is likely to be worse than 
might be expected.

The experiment described here offers an approach to measurement system 
insight that could feasibly be part of any substantial gene expression study. 
There  are  reasons  why  one  might  want  to  change  the  design  of  our 
experiment.  Inclusion of more animals would lead to more insight into gene-
list  reproducibility.   Our  investigation  provides  full  coverage  only  of  the 
probes for which liver expression differs from kidney expression.  Inclusion of 
more animal organs would lead to better coverage of the probes. 
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Intrinsic metrics for hybridization control and global expression 
profiling – the fruit fly developmental time series 
Hans Binder*, Carolin Ulbricht, Mario Fasold and Jan Brücker
University of Leipzig, Interdisciplinary Centre for Bioinformatics; * corresponding author: binder@izbi.uni-leipzig.de

Abstract 
Quality control and calibration of microarray data account for detection and correction of technological variation. We present 
a new calibration approach which generates a chip-specific metrics using the intensity data of each particular GeneChip. This 
so-called hook method assesses the performance of a given hybridization based on a set of chip-related summary 
characteristics. The method is applied to a developmental time-series to study the effect of technological and biological 
factors on the variability of the data and to characterize global expression changes. 

Introduction
The process of producing microarray data involves multiple steps which may suffer from different error sources 
resulting in poor expression data. Quality control is therefore an essential prerequisite for downstream expression 
analysis. In some cases the detection of data of “poor” quality however might be a misinterpretation of biological 
variation as technologically caused errors. Especially developmental and intervention experiments are candidates 
for global and/or unbalanced changes of the expression level which may pretend data quality problems. 
The quality of pre-processed fruit fly data were recently assessed using different numerical measures such as the 
normalized unscaled standard error (NUSE) and the relative log-expression (RLE) the interpretation of which 
turned out to be problematic in the case of time-course data 1,2. Particularly, NUSE estimates the variability of 
expression measures and RLE their deviation from the mean over the considered series after RMA-
preprocessing including quantile normalization. Their use for quality assessment is based on two assumptions: (i) 
the majority of probed genes remain biologically invariant and (ii) up- and down-regulations compensate each 
other. In fact, developmental microarray data potentially violate both assumptions because the fraction of 
differentially expressed genes might be relatively high and inhomogeneous over time. Another problem arises 
from the multichip character of RMA-preprocessing which makes model fitting problematic for small numbers of 
replicates as typically collected in time course experiments.  
In this paper we reanalyzed the fruit fly developmental series 3 using a novel method of microarray data 
calibration. This so-called hook method is a single-chip approach which independently processes the raw 
intensities of each microarray. It generates a series of chip characteristics suited for quality control and the 
assessment of the global expression degree. We illustrate the performance of the method and discuss its potency 
in the context of quality control and the analysis of large-scale unbalanced expression changes. We chose the 
fruit fly time series as an exemplary example because it allows direct comparison with the results of recent 
studies addressing similar issues 1,2. In addition we generated a quality report of this series using several 
established quality measures provided by BioConductor R-routines 4 as supplementary information available via 
www 5.

Hook method 
The so-called hook method (see 6-8 for a detailed description) applies to microarrays of the GeneChip-type 
containing pairs of perfect match (PM) and mismatch (MM) probes to estimate the abundance of ten thousands 
transcripts in one measurement. It independently analyzes the intensity data of each GeneChip microarray using 
the two-species Langmuir hybridization isotherm which assumes competitive binding of specific and 
“representative” non-specific transcripts to each probe. The method processes the PM and MM probe intensities 
(IPM and IMM, respectively) using the transformation  

PM MM PM MM1
2 set

log I log I and log I log I� � � � � �   ,    (1) 

where <…>set denotes averaging over each probe set of usually 11 PM/MM probe pairs addressing one 
transcript. Smoothing of the �-versus-� plot provides the hook curve which enables decomposition of the probe 
signals into contributions due to specific and non-specific hybridization by simple graphical analysis (see Figure 
1) and subsequent correction of the intensities for sequence specific effects using the positional-dependent 
nearest neighbour model as standard (Figure 1). The corrected signals are re-plotted into �-versus-� coordinates 
and again smoothed to obtain the corrected version of the hook curve which allows identification of absent and 
present probes using a simple break criterion (Figure 1). � �
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Figure 1: Hook-analysis of one Affymetrix Drosgenome 1 chip taken from the fruitfly time series: Raw (left panel) and corrected (middle 
panel) hook curves. Probe set level data are shown by scatter-dots. The intersection of the two lines defines the “breakpoint” which
separates “absent” probe sets in the flat region of non-specific hybridization on the left from “present” probes in the increasing part of the 
curve on the right. The change of the slope indicates the onset of specific hybridization. The parabola-like curve in the middle panel shows 
the fit of the theoretical “hook-equation” (2) to the data. It provides four parameters of well-defined geometrical and physical meaning (see 
Figure 2). The right panel compares sequence-corrections using positional-dependent single-base (N), nearest neighbor (NN) and next 
nearest neighbor (NNN) models. Because of the negligible improvement NN�NNN we use the NN-model as standard. 

Then, the hook curve is analyzed in terms of the two-species Langmuir binding model which predicts the following 
parametric equations for the �- and �-coordinates 

� � � �	 
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start PM MM
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(R) log R 1 / R 10 1 log B (R) / B (R)
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   .  (2) 

with the saturation terms � �� � � �� �
start start1 1

2 2PM MMB (R) 1 10 R 1 and B (R) 1 10 R 10 1� 
� � � 
� � ��� � � � � � � .
The argument; the so-called S/N-ratio 

� � � �, ,/ [ ] / [ ]� �PM S PM NR K K S N   ,       (3) 

is an expression measure related to the specific transcript concentration [S]. It is given in “intrinsic” units of the 
effective concentration of non-specific transcripts [N] and scaled by the ratio of the respective binding constants 
of the PM-probes. [N] and the binding constants are chip-specific values whereas [S] is specified for each 
transcript. 
The two parameter couples (�start, �start) and (�, 
) characterize the position and the geometrical dimensions of 
the hook curve in terms of the coordinates of their starting point and their width and height, respectively (Figure 
2). They are related to well-defined hybridization characteristics of the selected chip:  

� �PM,N start start1
max2 chip

slog , log n log K [N] , log n , log I
n

� � 
 � � � � � � � �
  . (4) 

Here, s and n are the “PM/MM”-gain parameters which are defined as the mean, chip-averaged ratios of the 
binding constants of the PM and MM probes for specific and non-specific hybridization, 

PM,S MM,S PM,N MM,N

chip chip
s K / K and n K / K� � , respectively. Imax is the maximum intensity reached at 

complete saturation of the probes with bound transcripts. 
The simple relation between the geometrical dimensions on the one hand and basic hybridization characteristics 
of the selected chip on the other allows the straightforward evaluation of the particular hybridization by visual 
inspection of the corresponding hook curve. For example, its width 
 simply reflects the mean level of non-
specific hybridization and its height �-parameter estimates the PM/MM-gain due to the central mismatch of the 
MM. Part a – c of Figure 2 illustrate the effect of typical experimental factors such as changes of the optical 
settings and of the amount of RNA.  
The position of a probe set along the hook curve characterizes its hybridization properties which are governed by 
the superposition of specific and non-specific binding and by saturation of the probe spots. Accordingly, one can 
divide the hook curve into five consecutive hybridization regimes (Figure 2). The argument of the hook-equation 
can be simply related to the difference of the hook coordinates of a selected probe set relative to the respective 
start values to a good approximation 7 as illustrated in Figure 2, 

� � � � � �	 
start start1
2log R 1� � � � � � � � �   .     (5) 

Hence, the hook curve spans a metrics system for expression estimates in intrinsic units which are defined by the 
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Figure 2: Geometrical dimensions of the hook 
curve (see Eqs. (2) and (4)) and hybridization 
regimes. The start coordinates (�start, �start)
characterize the non-specific background level 
in intensity units and the N-PM/MM-gain, 
respectively. (
, �) characterize the width of 
the hook and its height in the absence of 
saturation, respectively. The curve divides into 
five hybridization regimes: non-specific (N), 
mixed, specific (S), partial (sat) and complete 
(as) saturation. The open circle represents the 
�,�-coordinates of a selected probe set 
(transcript). The distances relatively to the start 
point are directly related to the respective 
expression (Eq. (5)). Part a – c schematically 
illustrate typical experimental effects on the 
dimensions and/or position of the hook curve: a) Optical scaling of the intensity owing to changes of the scanner settings or the labeling 
equally shift the start AND end points in horizontal direction. b) Alterations of the non-specific background level owing to changes of the 
amount of RNA and/or of of its composition shift ONLY the start point in horizontal direction giving rise to the narrowing of the hook for 
larger background contributions. c) Modifications of the mismatch design change the vertical dimensions of the hook, e.g. a smaller 
PM/MM gain decreases its height. 

Figure 3: Corrected hook-plots of the fruit fly developmental time-series: 
RNA obtained from embryos of wild type fruit flies every hour during 
incubation over 12 hours was hybridized on Drosgenome 1 GeneChips. 
The time-series was performed in triplicate; A, B and C. The parabola-like 
curves are fits of Eq. (2). 
level of non-specific hybridization and mean binding 
constants of a given chip (Eq. (3)). Averaging over all probe 
sets provides the S/N-exponent � �

R 0 5;chip
log R 1�

�
� �

as measure of the mean specific transcript abundance. 
In the final step of the hook analysis the sequence-corrected 
probe level intensity data are corrected for the non-specific 
background and for saturation effects and then summarized 
for each probe set to get transcript-related expression 
estimates 7.

Hybridization control of the Drosophila 
time series 
We reanalyzed the fruit fly developmental time series 
created by Tomancak et al. 3 (http://www.fruitfly.org/cgi-

bin/ex/insitu.pl). It comprises three replicated series (A, B and C) of 12 consecutive time points starting at 1 hour 
and ending at 12 hours post egg laying of the flies. 
Figure 3 shows the collection of corrected hook-plots generated from the chip data. Except of chip B-1 all plots 
reveal - on first sight - similar hybridization quality without evident outliers and marked mutual horizontal and/or 
vertical shifts of the curves. Detailed analysis basically confirms this impression for the mean non-specific 
background intensity (�start), and the width- (
)
and height- (�) parameters, which remain virtually 
constant over time (Figure 4). The experimental 
series is obviously characterized by virtually equal 
optical settings and hybridization conditions.�
�
Figure 4: Selected hook-parameter as a function of fly-
developmental time. The thin lines/symbols refer to the 
different replicates (A: red; B: green; C: blue) and the thick 
line to their mean. Series B systematically deviates from A 
and B (see 
, � and %N). It was hybridized on a different day 
than the other two series. This result confirms previous 
quality assessment using NUSE and RLE 2.
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Contrarily, the PM/MM-gain of the N-range (�start), partly the percentage of absent probes (%N) and especially 
the S/N-exponent (�) indicate systematic trends upon development of the fly embryos which are probably not 
caused by technological effects. These changes thus possibly reflect subtle modifications of the global expression 
pattern which will be addressed in the next section.

Figure 5: 3’/5’-amplification bias of transcript abundance. Corrected hook-
plots (upper panel) and 3’/5’-difference plots of two selected chips (series B 
and C at hour 10) indicate different RNA-quality: The split between the 3’- 
and 5’-branches in the difference plot estimates the mean log-intensity 
difference between probe number 8-11 and 1-4 in each probe set (“m” refers 
to probes no. 5 – 7). It is plotted as a function of the total mean over all 
probes in each set �. Importantly, the 3’/5’-bias becomes evident only for 
“present” probes upon specific hybridization to the right from the breakpoint 
of the hook curves. In the N-range the 3’/5’-bias disappears. The total mean 
over the branches therefore markedly underestimates the 3’/5’-bias (see 
horizontal dotted lines). Sample B-10 is of poorer quality than sample C-10 
because of the larger split in the range of present probes.. 
The amplification step upon RNA preparation potentially results 
in 5’-truncated transcripts with consequences for expression 
analysis. This amplification bias can be estimated using special 
control probe sets (e.g. GADPH) or the so-called RNA-
degradation plot which log-averages the probe intensities 
according to their sequential ordering in the probe sets to 
identify poor RNA by relative large gradients along the probe 
rank 4.
We recently proposed a modification of this approach which 
accounts for the fact that non-specific hybridization is not 
affected by the 3’/5’-bias 8. Our method calculates sub-
averages �sub over the first and the last four probes of each 

probe set (near to the 5’ and 3’ end of the transcript, respectively) using Eq. (1) and then the difference � – �sub is 
plotted as a function of the hook abscissa (Figure 5). A large split between the 3’ and 5’-branches in the range of 
the present probes is indicative for poor RNA-quality. We identified only sample B-10 of poor 3’/5’-characteristics 
in the whole developmental series whereas the remaining chips 
are acceptable (see, e.g., C-10 in Figure 5). Note that the 
averaging over all probes without differentiation between specific 
and non-specific hybridization (as applied in the degradation 
plot) at best underestimates the 3’/5’-bias but at worst completely 
fails to detect poor RNA 8.

Global expression changes 
To further explore the systematic trend revealed in Figure 4� we
calculated the probability distribution of the S/N-ratio in terms of 
log(R+1) for early, intermediate and late stages of embryo 
development (Figure 6). The obtained plots can be roughly 
divided into three parts referring to absent (R=0), weakly-
expressed (0< R < 2.2) and well-expressed (2.2 < R) genes. The 
abundance of the latter ones decays exponentially to a good 
approximation.  
Figure 6: Global expression changes during fly-development. Probability 
distribution of the S/N-ratio, log(R+1), at early, middle and late stages: 
replicates A and C are pooled at time-points 1+2, 5+6 and 11+12, respectively. 
The distributions decay exponentially at larger abscissa values as illustrated by 
the dotted line (upper panel, � is the decay constant). The two panels in the 
middle and below show the changes of the respective probability distributions 
relatively to their mean and the resulting effective change of the log-expression. 
Note that the different global changes of absent, weakly expressed and 
(moderate and strongly) expressed transcripts are induced more strongly at 
late or early stages of embryogenesis of the flies, respectively (see arrows).  
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The difference of the distributions with respect to their average reveals different trends in the tree expression 
ranges: The populations of well-expressed, of absent and of weakly expressed genes are maximal at early, 
intermediate and late stages of development, respectively. The global expression pattern thus gradually 
rearranges with time. The respective maximum net-changes of the expression degree (in terms of log(R+1)) are 
in the order of 5-10% of the expression values (lower panel of Figure 6). 

Figure 7: The hook-
positions of selected 
genes reveal 
characteristic time-
profiles: Group 1 
refers to early 
induced, group 2 to 
broadly expressed 
and group 3 to late 
induced genes, 
respectively. The 
right part shows the 
full time profiles of the 
expression values of 
the selected genes. 
The open circles refer 
to the same points in 
both parts of the 
figure.

The observed global pattern of transcript abundance results from the superposition of very diverse expression 
changes of individual genes. Tomancak et al. analyzed in detail the temporal and spatial expression profiles of 
the fly embryos and relates them to different tissues and cellular functions 9: About 35% of the studied 5560 
genes show tissue-restricted expression with peaks especially at early or late stages of embryogenesis, 46% are 
broadly expressed showing a ubiquitous but not uniform profiles and for the remaining 19% no expression was 
detected. Figure 7 illustrates characteristic time courses of early induced, broadly expressed and late induced 
genes in terms of their hook coordinates (left panel) and expression values (right panel). The hook-coordinates in 
a simple and illustrative fashion reflect the expression degree in the context of their hybridization characteristics, 
for example, whether the probe signals are near the background or the saturation level or in the intermediate S- 
and mix-ranges (compare with Figure 2). 

Conclusions 
Changing variability of transcript abundance and unbalanced differential expression are inherent biological 
properties, which especially pronounce in developmental time-series experiments. Appropriate expression 
analysis requires subtle calibration techniques which correct raw data for technical artifacts without removing 
meaningful biological information from the corrected data. The hook-method provides expression estimates and 
chip-summary characteristics using the intrinsic metrics provided by the hybridization reaction. We demonstrate 
the potency of the method to establish new measures for microarray quality control which supplement existing 
standards of microarray quality assessment. 
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Experiment quality - direct route to reliable data
Ralph Beneke, Product Manager, Tecan Austria GmbH

Insufficient data quality? Wasting time, sample and money?
Start with a clear vision and explore and make use of existing collaborative networks & 
references. Plan your lab infrastructure & resources according to design of experiment 
(incl. quality control, optimization and validation process), the biological material and the 
workload & throughput.

Are there data reduction, -tracking and data management as well as appropriate budget 
& funding available for the routine?
Understanding  principle  of  platforms  –  advantages  &  limitations  of  their  analytical 
capability, robustness and flexibility is prerequisite when selecting appropriate platforms 
and tools. 
The weakest step is the limiting step. Therefore measure of quality and variation of each 
step (success vs. failure rate) is crucial. Cost for maintaining the quality and gaining on 
flexibility to expand applications without losing on quality have to be considered.

No - or faulty - data is more expensive than generating accurate data.
Old saying “garbage in - garbage out” is true from design of experiment down to all steps 
until data analysis.
Learning  from  MAQC  projects  with  good  experimental  design,  optimization  first, 
standardized processes and environmental conditions, applied analysis of variations on 
random block design and control measures. The robustness of platforms can buffer for 
smaller  variations  between  different  labs.  Simplicity  of  workflow  cuts  labour  cost, 
automation minimizes process complexity and failure rate (operator/protocol?) with the 
add-on of scalable throughput without losing on quality.

Tecan is more than delighted to listen to your different subjects and offer expertise in 
selecting from platforms and helping on implementing them in your lab routine.
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An Array of FDA Efforts in Pharmacogenomics
Weida Tong, MAQC consortium, Toxicoinformatics FDA, Jefferson, Arizona, U.S.A.

Pharmacogenomics (PGx) is identified in the FDA Critical Path document as a major 
opportunity for advancing medical product development and personalized medicine. An 
array  of  FDA  efforts  on  PGx  has  been  taking  place  at  the  inter-center  and  cross-
community collaborative levels.  Specifically,  FDA issued guidance to industry on PGx 
data submission. The guidance defines a novel mechanism entitled Voluntary Genomics 
Data Submission (VGDS) whereby the sponsor is able to interact with the agency in the 
early stage of drug development by submitting PGx data on a voluntary basis. The name 
of Voluntary eXploratory Data Submission (VXDS) has been adopted recently to reflect 
diverse  types  of  data  received  in  this  program,  ranging  from DNA microarray  data, 
proteomics and metabolomics data to pharmacogenetic data including data from genome 
wide  association  study  (GWAS)  data.  To  facilitate  this  process,  an  integrated  FDA 
bioinformatics tool,  called ArrayTrack,  developed at NCTR/FDA, is  being refined as a 
review tool for managing, analyzing and interpreting this exploratory data i.e. genomic, 
proteomic and metabolomic data, from both clinical and non-clinical data submissions. To 
further understand the PGx technology in the regulatory context, a MicroArray Quality 
Control (MAQC) project has been initiated. This is a community supported project led by 
the FDA to address various issues associated with DNA microarrays, a critical technology 
used in the generation of PGx data. The lessens learned from both VXDS and MAQC are 
paving the way for development of the guidance document for future voluntary as well as 
regular submissions of PGx data to the FDA. ArrayTrack is an integral part of VXDS and 
MAQC. Together these capabilities provide the Agency with an integrated bioinformatics 
infrastructure to support data management, analysis and interpretation. ArrayTrack also 
serves  as  a  vehicle  to  translate  the  guidance  document  into  routine  application  for 
regulatory review and decision making.













EMERALD microarray platform comparison based on
hypothesis tests under order restrictions

Florian Klinglmüller1 and Thomas Tüchler2

1. Introduction

The EMERALD workshop at CAMDA has provided a dataset [4] for analysis
that presents microarray measurements from two different tissue materials
(liver, kidney) and two titrations in different proportions therof (1 : 3,3 : 1).
The main motivation behind titration experiments [6] is an a-priori known
relation between measurements from different conditions. One downside,
however, is that the set of true positives is not known in advance. This
motivates the use of a hypothesis test that tests for a monotonic trend in the
concentrations of the titration design. This seems especially promising for
the task of cross-platform comparisons. From this point of view testing the
implied order restrictions can also be seen as a least common denominator
that one would expect to be consistent over several technical conditions.

1.1. Microarray Data. RNA material from two tissues, liver and kidney
extracted from six genetically different rats was measured on three different
commercial microarray platforms: Affymetrix Rat Genome 230 2.0 array, Il-
lumina RatRef-12 array and Agilent Whole Rat Genome array. Samples are
titration mixtures prepared in four different conditions: 100% liver mate-
rial, 75% liver and 25% kidney material, 25% liver and 75% kidney material
and 100% kidney material. For each condition and individual animal three
technical replicates are available.

1.2. Notation. Below we have adopted the following notations and indices.
We will generally refer to observed log2 expression measures by the letter
y using the following indices: For the four conditions we use index j =
L, M1, M2, K with the labels referring to: 100% liver material (L), 75%
liver and 25% kidney material (M1), 25% liver and 75% kidney material
(M2), and 100% kidney material (K), respectively. Technical replicates will
have index k, (k = 1, 2, 3), genes g = 1, ..., N where N is the total number
of genes and animal i = 1, ..., 6.

1Medical Statistics and Informatics, Medical University of Vienna, Spitalgasse 23, 1090
Vienna, Austria, float@lefant.net

2WWTF Chair of Bioinformatics, BOKU University, Muthgasse 18, 1190 Vienna,
Austria
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Figure 1. Boxplots of mean log2 expression values for the 4
tissue groups. Thick line in the box represents median, box
interquartile range and whiskers 2.5 times the interquartile
range, points signify values exceeding these. Consistent over
all platforms pure liver samples have lower expressions in
the median than pure kidney samples. This is indicative for
differing total to messenger RNA concentrations.

1.3. Exploratory analysis of unnormalized data. In this section we
present some aspects of the data uncovered by exploratory analysis of the
unnormalized data. By looking at the distributions of observed expressions
in the different tissue preparation (L,M1,M2,K) we can observe that the
median observed signal in liver is considerably lower than in kidney. Figure
1 shows boxplots of the average log2 expression values in the 4 groups, for
each platform. This observation is indicative for different total to messenger
RNA proportions in the two tissues. More importantly it is relevant to
the analysis of monotonicity, since using unnormalized signals we expect a
tendency to upward trends.

1.4. Tests for monotonic trend. Monotonicity of the observed expression
values in the order implied by the titration design, was assessed using the
Barlow test statistic E

2
g ([1] and [8]). [5] have recently discussed this statistic

in the context of microarray experiments and developed appropriate multiple
testing procedures. A major advantage of this approach is that it is based on
isotonic regression and does not depend on assumptions about the functional
form of the trend (e.g. linear). For each gene g and animal i we have 3
observations for each of the four conditions (L,M1,M2,K) which induce a
natural order. We test the null hypothesis of equal mean expression levels
μj,g

(1) H0,g : μL,g = μM1,g = μM2,g = μK,g,

against the ordered alternatives

Hup
1,g : μL,g ≤ μM1,g ≤ μM2,g ≤ μK,g,(2)

Hdown
1,g : μL,g ≥ μM1,g ≥ μM2,g ≥ μK,g,(3)
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with at least one strict inequality. In order to adress the variance structure
implied by the experimental design (3 technical replicates per animal and
condition, 6 animals) we calculate test statistics seperately for each of the 6
animals and then combine the resulting p-values across the 6 animals. The
E

2up
ig statistic for gene g and animal i is the ratio of the sum of squares

explained by isotonic regression means, assuming an upward trend, against
the sum of squares explained by the equal means assumption. The null
hypothesis is rejected for large values of E

2up
ig . Similarly, the E

2down
ig is

calculated accordingly using isotonic regression assuming a downward trend.
Thus, for each gene and animal we obtain two one sided p-values pup

ig and
pdown

ig using the permutation null distribution. To obtain overall one sided
test statistics over all 6 animals, we combine the one sided p-values using
the inverse normal combination function

(4) pC,up
g = 1− Φ(

1√
N

∑
i

Φ−1(1− pup
ig )),

where Φ is the standard normal distribution function and Φ−1 its corre-
sponding quantile function. pC,down

g is defined by analogy. Under the null
hypothesis of equal expression levels across the four conditions and 6 animals
pC,up

g and pC,down
g are uniformly distributed and thus conservative one-sided

p-values for the corresponding null hypotheses. A two-sided p-value is given
by pC

g = 2min(pC,up
g , pC,down

g ). The directional decision is then made by
choosing the smaller of the two p-values. To adjust for multiplicity we use
the Benjamini-Hochberg [2] procedure controlling the false discovery rate
(FDR), which has also been shown to control the mixed-directional FDR
[3]. Computation of test statistics and p-values are based on the library
IsoGene provided by [5] for the GNU R statistical programming language [7].

1.5. Results. In the following analysis we used data normalized by either
quantile or median baseline normalization to reflect the typical practice of
statistical analysis. Simple order assesment of the observed expression means
yjg in the different conditions (j=L, M1, M2, K) pooled over technical
replications and animals as done in [9] suffers the problem that e.g. assuming
4 i.i.d. random variables each of the 4! = 24 possible order combination will
be equally likely, with two of them corresponding to monotonicity, hence
resulting in a 1/12 chance for a strictly monotone trend. Additionally, by
looking only at genes for which the absolute mean difference |yLg − yKg| is
above a certain threshold the probability to observe monotonicity by chance
increases even more and reaches 50% as the threshhold for the difference
increases. To improve on these shortcomings we use hypothesis tests outlined
above that control a multiplicity adjusted Type I error rate.

1.6. Across platform consistency. Since approximation of empirical null
distributions using sample label permutations is computationally intensive
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Figure 2. Venn diagramms showing the overlap of signifi-
cant rejections between the three platforms. Left panel shows
results from quantile normalized data, right panel from base-
line normalized data.

3 for the time being, we only report results for a randomly selected subset
of 200 genes (out of the approx. 6900 genes common to all three platforms)
using 1000 permutation iterations. Across platform consistency was assessed
based on the two-sided p-values pC

g . Figure 2 shows a venn diagram summa-
rizing the overlap of rejections in the three different technologies with the
left panel referring to quantile normalized data and the right to baseline nor-
malized data. The proportion of genes significant in all three technologies
is around 70%.

1.7. Difference between normalization methods. The different loca-
tions of the observed expression distributions (see Figure 1) suggests that
without normalization we should expect a tendency for upward trends. Both
normalization methods are able to remove any observable differences in lo-
cation and scale between the 4 groups (data not shown). The results from
hypothesis testing differ between the two methods. For example the follow-
ing table shows a cross tabulation of results from the Agilent platform:

Quantile
Baseline Sign. Non. Sign
Sign. 137 8
Non. Sign. 34 21

For six hypotheses we observed that the monotonic trend is significant for
both normalization methods but the direction changed.

3We estimate more than 200 hours of computation time for all of the genes using 10000
permutations with the hardware we have available
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2. Discussion

The applied hypothesis tests detected a monotonic trend in the expression
levels in a very large proportion of investigated genes. However, normaliza-
tion methods typically rely on the assumption that the majority of genes
are not differentially expressed which may be one reason for our finding that
for a considerable proportion of genes the test results do not coincide for
the two normalization procedures. In a next step we will investigate the
consistency accross platforms as well as across normalizations methods for
all genes that are present in all three platforms.
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microarray platform comparisons by Bayesian inference of

technical and biological variance components
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Abstract

With the difficulty of constructing a biologically rel-
evant ‘gold standard’, an evaluation of the perfor-
mance of different microarray platforms remains a
challenge. The EMERALD contest data set exam-
ines known tissue mixtures and a biological vari-
ance component vis-a-vis technical variations, al-
lowing a comparative analysis of the different gene
expression profiling platforms studied. We here in-
troduce and apply a fully Bayesian model for the
inference of the variance components which explic-
itly exploits the tissue mixtures featuring in the
EMERALD experiments. The model permits an
assessment of each platform’s ability to detect bio-
logical variation. We observed intensity dependent
differences specific to each platform and determined
that biological variance amounts to about 30% of
the signal variance in this data set.

Introduction

Evaluating microarray performance across plat-
forms is not straightforward. Challenges already
arise, at the point where one has to decide, which
measurements are supposed to correspond to each
other. Although targeting the same organism, the

∗WWTF Chair of Bioinformatics, BOKU University Vi-
enna, Muthgasse 18, 1190 Vienna, Austria. The authors
can be contacted via email at firstname.lastname@boku.ac.at,
e. g., at thomas.tuechler@boku.ac.at.

†Medical Statistics and Informatics, Spitalgasse 23,
Medical University of Vienna, 1090 Vienna, Austria,
float@lefant.net

three platforms in the contest data set differ con-
siderably in the number of measurements they pro-
vide (from 22,500 in Illumina to 41,000 in Agilent).
With genome annotations constantly evolving, it is
thus necessary to limit an evaluation to a set of
genes, that are measured by all platforms, and for
which the underlying mRNA sequence is reasonably
well established. With probe design being crucial
for microarray performance [1], it needs to be as-
sured that the reporters compared to each other
were designed for the same, existing and well de-
fined mRNA species.

Focussing on the evaluation task itself, current ap-
proaches range from determination of technical pre-
cisions to elaborate spike-in experiments. While
the former approach does not require any external
reference, its ability to determine accuracy is lim-
ited. On the other hand, establishment of spike-
in experiments allowing extrapolation to complex
mixtures in real world samples is still a field of on-
going research [2–5].

Pursuing an approach with known mixtures of com-
plex samples, as performed in the EMERALD ex-
periments to be analysed in this contest, offers an
interesting alternative. RNA samples from a widely
used model organism, Rattus norvegicus, provide
the realistic setting for this study and the mixtures
enable model based analysis of the data [6]. For
quantitative evaluation, we resort to the fact that
the biological replicates, i. e., the different rats in
this study, contribute variation to gene expression
levels; be that due to mutations, epigenetic or en-
vironmental effects in their live history. Being able
to reliably detect these biological differences, de-
spite the technical noise component blurring the

1
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Figure 1: Directed acyclic graph of the variance com-
ponent model exploiting tissue mixture ratios.

measurements, can therefore serve as a criterion
for a successful experiment. We hence devised a
Bayesian model to infer the amount of variance that
can be explained biologically, as well as the uncer-
tainty in the mRNA contents of the tissue mixtures.

In summary, we assessed the three platforms abil-
ity to extract biological differences using a model
dedicated to the particular mixture design in this
data set.

Methods

Preprocessing

A subset of reporters designed against unique
and well established mRNA species was created
by filtering for ‘NM’ RefSeq identifiers common
to all three platforms (www.ncbi.nlm.nih.gov/
RefSeq/). Following McCall and Irizarry in their
spike-based platform comparison [5], Affymetrix
data were considered as summarised by RMA.
However, we expanded on their preprocessings by
investigating baseline, quantile and VSN [7] nor-
malization individually for all three platforms. In
addition, we also investigated reannotated [8] and
GCRMA preprocessed [9] Affymetrix data in con-
junction with VSN and PLM detrending [10] as de-
scribed by Hüttel, Kreil et al. [11].
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Figure 2: Simulation study validating Variational Bayes
inference of the model: recovery of a known mixture ra-
tio ρ = 2, convergence of the lower bound on the model
evidence after 5 iterations already, recovery of overall
and animal gene means, and recovery of known biologi-
cal variance contributions of 67% and 80%, respectively.

Inferring variance components

Biological and technical variance components were
quantified in a fully probabilistic way. To this end,
r replicated expression measurements xTig for tis-
sue T , individual rat i and gene g were modelled
with biological and technical precision, λTg and λt;
the latter one being shared by all genes [12]. In-
troducing a tissue mixture ratio ρ = [mRNAK ]

[mRNAL] to
account for unequal mRNA concentrations in liver
and kidney samples [6, 13], the hierarchical model,

xLig ∼ N (
μLig, λ

−1
t

)

xM1ig ∼ N (
ρM1 · μLig + (1− ρM1) · μKig, λ

−1
t

)

xM2ig ∼ N (
(1− ρM2) · μLig + ρM2 · μKig, λ

−1
t

)

xKig ∼ N (
μKig, λ

−1
t

)

μLig ∼ N
(
μLg, λ

−1
Lg

)

μKig ∼ N
(
μKg, λ

−1
Kg

)
,

with uninformative Gaussian priors on the gene
means μLg and μKg, and uninformative Gamma

2
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Figure 3: Cross platform concordance. Signal responses differ substantially between platforms, especially in the
lower intensity regions. The plots show baseline normalised gene expressions in liver samples, averaged over
animals and replicate arrays for each of the three platforms on subset of 6111 high confidence comparable genes.
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Figure 4: Outlier slides. While the first two technical replicates, here 5B-2 and 5B-1, align well in this example
from the Agilent dataset, the third one, 5B-3, behaves differently with outliers affecting all platforms.

priors on the biological precisions λLg and λKg, was
then inferred applying Variational Bayes [14]. Be-
sides fully exploiting the mixture design and pro-
viding full posterior distributions over the model
parameters, this approach is computationally fea-
sible even for microarray sized data sets. Also note,
that sharing a technical variance distribution for all
genes, renders a subsequent regularization of the
technical variance redundant [15] and makes esti-
mates more robust [16]. A directed acyclic graph
representation of the model and simulation studies
validating its performance, are depicted in Figs. 1
and 2.

Results

Inspection of the exploratory plots in Fig. 3
reveals considerable between-platform variation
(R2 ∼ 0.65). This is especially the case for the low

intensity measurements. Affymetrix and Illumina
spread low signals across a wider intensity range
as compared to Agilent. Within-platforms, obvi-
ous outlier slides, as depicted in Fig. 4, contributed
substantial variation. For Affymetrix, array 3B-3
was recognized as such an outlier. For the Illu-
mina data, outliers comprised experiments with low
cRNA yield (3 of 6), but even more so plate location
3 (4 of 6) and hybridization data 10/06/08 (5 of 6).
For Agilent the third replicate series (hybridization
names ‘. . . -3’) conducted by operator ‘A’ matched
the others poorly. Interestingly, this operator also
corresponded to an increased ‘AmpLabelingInput-
Mass’. Since removal of outlier arrays improved the
evaluation statistics, we here only report the results
from these cleaned data sets.

Evaluation of how often the biological variance ex-
ceeds the technical one in Figs. 5(a) to (c) show that
in the lower intensity ranges Agilent reports the
most variation, with 5-10% of genes having greater

3
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(d) Inferred distributions

Figure 5: Biological variance. Panels (a) to (c) plot, different normalization methods, the percentage of genes
that have a higher biological than technical variance component, as a function of signal intensity, providing a
direct comparison of all three platforms. The grey line in panel (c) indicates Affymetrix data from the alternative
GCRMA-VSN-PLM preprocessing. Panel (d) depicts how the inferred mixture factor ρ and the distribution of
biological variance contributions differs between genes of low (top row) and high intensity (bottom row); shown
for Illumina liver measurements.

biological than technical variance. Affymetrix, on
the other hand, has almost no biological variance
detectable in baseline corrected low intensity data.
More elaborate normalization methods, like quan-
tile or VSN normalization, however, increase this
feature to 5% for Affymetrix and to more than 10%
for Agilent and Illumina. Intriguingly, the situa-
tion changes for medium and and high intensity
data. While all three platforms identify compara-
ble biological differences between individuals in the
medium intensity ranges – 20% of genes with at
least half of the total variation explained biologi-
cally – Affymetrix finds up to 45% of such genes
in the higher intensity segment of VSN normalized
data. Additional preprocessing efforts (GCRMA,
PLM) lead to similar results in medium range
Affymetrix data already. Eventually, regardless of
platform and normalization, the extractable bio-
logical variances drop again in the highest inten-
sity segment, which could indicate saturating sig-
nal responses. On average, about 20% of the genes
were identified with a biological variance compo-
nent above the technical noise level, explaining
about 30% of the overall variance.

The posterior distribution of the mixture parame-
ter ρ provides a further indicator for how well the

data capture the titration design1. The less the
measurements reproduce a monotonous trend from
pure liver to pure kidney samples, the more un-
certainty about ρ is obtained. If liver and kidney
specific genes can not be distinguished, the ratio
defining the mixtures M1 and M2 becomes irrele-
vant. Panels on the left in Fig. 5d exemplify that for
low and high intensity Illumina data. Like Liggett
et al. we observed more mRNA in the kidney total
RNA samples (ρ > 1). We also want to empha-
size, that the better the mixture design is reflected
by the data, the more information about individ-
ual gene expression values can be gained from the
mixture samples. This will provide more power for
inferring the biological variance component. Our
evaluation criterion is thus directly linked to the
preservation of the mixture design.

Apart from these technical observations, we also
found that the liver samples show more variation
than those from kidney. With no obvious biolog-
ical explanation and variations in gene expression
having functional implications [17], this remains a
potential topic for further biological investigations.

1Note, that our model considers both the known ratios
of total RNA mixtures and the unknown mRNA concentra-
tions within the liver and kidney total RNA samples (cf.
Shippy et al. for detailed derivations).
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Discussion

The ability to determine biological differences de-
spite inherent technical fluctuations, is a key re-
quirement for any microarray experiment. Assess-
ing the success of an experiment by the number
of genes for which the presumed biological signal
exceeds the technical noise thus seems a sensible
idea. We have exploited the biological replicates
in this study to quantify how much natural varia-
tion between individual animals can be detected
using different microarray platforms probing the
same genes. We put a strong emphasis on compar-
ing only a subset of reporters, that are not likely
to suffer from changes in genome annotation, or
uneven fractions of low confidence gene predictions
within the three microarray platforms. Analysis
was therefore based exclusively on reporters tar-
geting well curated, unique reference sequences.

To establish biological variance as a measure for
platform performance, we have stipulated that a)
there are in fact differences between animals and b)
that these animal effects are not confounded with
other experimental or normalization effects; i. e.,
that a randomised study design enables valid infer-
ence of the biological variance component. Based
on that, we devised a Variational Bayes model ac-
commodating the particular mixture design of the
contest data set. At this point we wish to high-
light, that inference within the Variational Bayes
framework, though not yet widely used in the field,
provides a range of nifty features: Full poste-
rior distributions for all variables are obtained in
a single inference step, which is particularly use-
ful for modelling mixtures in titration experiments
[6, 13]. Moreover, the Variational Bayes algorithm
is computationally efficient and scales well even for
microarray data. Eventually, a lower bound on
the model evidence can be derived by the means
of Variational Bayes, providing a direct measure
for convergence of the algorithm and supporting
straightforward model comparisons.

In contrast to previous studies of biological versus
technical variance [18], we find that that the bio-
logical component in this experiment is on average
about a third of the technical noise. Clearly, bio-
logical variation depends on differences in genetic
background and individual life history. The smaller
the genetic differences, the better the experimental

environment is controlled, the more subtle the bio-
logical variation will be; in turn increasing require-
ments for a successful microarray experiment.

Conclusion

Variation between individual rats in the EMER-
ALD data set is small in relation to the technical
measurement noise. Typically about 20% of the
genes show biological variance exceeding technical
fluctuations. Intriguingly, the three platforms’ abil-
ity to detect this biological component differs re-
markably with preprocessing and signal intensity.
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Thomas Tüchler acknowledges partial support by
the Austrian Gen-AU program.

References
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cal vis-à-vis biological variation in gene expression
measurements. preprint, 2008.

[14] T. Leen, editor. A Variational Bayesian Frame-
work for Graphical Models, Cambridge, MA, 2000.
NIPS 12, MIT Press.

[15] G. K. Smyth. Linear models and empirical bayes
methods for assessing differential expression in mi-
croarray experiments. Stat Appl Genet Mol Biol,
3:Article3, 2004.

[16] D. P. Kreil and D. Wild, editors. Estimating Vari-
ance Components Using Variational Bayes, 2008.
Probabilistic Modelling in Computational Biology.

[17] L. Lopez-Maury, S. Marguerat, and J. Bahler.
Tuning gene expression to changing environments:
from rapid responses to evolutionary adaptation.
Nat Rev Genet, 9(8):583–93, 2008.

[18] D. Stivers, J. Wang, G. Rosner, and K. Coombes,

editors. Organ-Specific Differences in Gene Ex-
pression and UniGene Annotations Describing
Source Material., 2002. Critical Assessment of Mi-
croarray Data.

6



A Data Transformation Ontology for Microarrays
James Malone, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, 
Cambridge, CB10 1SD, United Kingdom

The diversity in microarray experiment designs and applications requires that a large 
number of pre-processing approaches are available. In order to facilitate unambiguous 
and consistent descriptions of experimental data transformation the development of a 
‘normalisation  and  transformation  ontology’  (NTO)  has  been  undertaken,  which  we 
describe in our talk. This provides a means to conceptualize and classify the approaches 
used,  describe  relationships  between  these  concepts  and  store  these  in  a  machine 
readable form. Such a representation can offer a useful checking mechanism to ensure 
that data is correctly modelled as well as a more powerful querying mechanism. The NTO 
has been developed as part of the Ontology for Biomedical Investigations (OBI), a large, 
multi-national,  collaborative  community  development  project.  A  Beta  version  of  the 
ontology is now available from http://obi-ontology.org/page/Main_Page.



Keynote

Multiple Testing on the Graph of Gene Ontology
 Jelle Goeman, Leiden Iniversity Medical Center, The Netherlands

Gene set testing methods often test gene sets derived from Gene Ontology. When testing 
the whole graph of Gene Ontology (GO) it is important to correct for multiplicity, and the 
question  arises  naturally  how  we  can  make  use  of  the  graph  structure  of  GO  for 
multilicity  correction.  We  propose  a  multiple  testing  method,  called  the  focus  level
procedure, that preserves the graph structure of Gene Ontology (GO). The procedure is 
constructed  as  a  combination  of  a  Closed  Testing  procedure  with  Holm's  method.  It 
requires a user to  choose a “focus level”  in the GO graph,  which reflects  the level  of 
specificity of terms in which the user is most interested. This choice also determines the 
level in the GO graph at which the procedure has most power. The procedure strongly 
controls  the  family-wise  error  rate  without  any  additional  assumptions  on  the  joint 
distribution  of  the  test  statistics  used.  We  also  present  an  algorithm  to  calculate 
multiplicity-adjusted p-values. Because the focus level procedure preserves the structure 
of the GO graph, it does not generally preserve the ordering of the raw p-values in the 
adjusted p-values.
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Christian Bender∗, Holger Fröhlich, Marc Johannes, Tim Beißbarth

German Cancer Research Center (DKFZ), Division of Molecular Genome Analysis (B050),

Im Neuenheimer Feld 580, 69120 Heidelberg, Germany

Email: c.bender@dkfz-heidelberg.de;

∗Corresponding author

Abstract

Motivation: The goal of this study is to demonstrate a novel approach to analyze the CAMDA 2008
contest time-course microarray dataset of Affara et al. (2007) on endothelial cell apoptosis. We utilise different
methotodologies such that by the combination of the different analysis approaches a picture of the underlying
regulation mechanisms is created.

Background: Integration and interpretation of various data sources is of great importance to gain a complete
understanding of biological systems. Databases like KEGG, InterPro and GO offer information that can be
combined with network reconstruction results for high throughput genomic data. New regulatory interactions
inferred from this data can guide the focus of further research and validate the role of these novel components in
biological experiments.

Results: We present a combination of a network reconstruction approach with a method for functional
characterisation of the involved components. In the apoptosis microarray experiment we identify the KEGG
pathway Cell Cycle as significantly overrepresented in the set of differentially expressed genes. We extend this
pathway by novel components identified by protein domain signatures and infer interactions of the components
with a dynamical bayesian network (DBN) reconstruction method. A validation of the interactions is performed
via a literature network constructed by Ingenuity R©software.

Conclusions: By the combination of inference of a gene regulatory network and functional characterisation
of the genes in the network we show how to integrate knowledge about regulatory interactions learned from
experimental data into known pathway contexts.

Background

Interpretation of high throughput data from
genomics or proteomics studies is a major
challenge in today’s research. Huge amounts
of data have to be analysed statistically
to reconstruct regulation or interaction pat-

terns of biological systems from the data. Af-
ter such an analysis a list of interesting genes
or proteins is usually left which have to be
characterised regarding their function. The
KEGG database (Kanehisa et al., 2008) of-
fers gene annotation and visualises this in-

1



formation in pathway maps, but only anno-
tation of about 4000 of the estimated 20000-
25000 protein-coding genes is available. The
Gene Ontology Consortium (2004) offers an-
notation for most genes, but not all genes
have a known function. Geneset Enrichment
Analysis can be used to determine over-
represented functions or pathways in gene
lists (e.g. Beissbarth and Speed (2004); Al-
Shahrour et al. (2004)), but is limited by
the availability of gene annotation. We have
devised a novel method to predict pathway
membership of genes based only on the pro-
tein domain annotation and validated this
method in simulation studies (Hahne et al.,
2008; Fröhlich et al., 2008). The InterPro
database (Mulder et al., 2008) offers protein-
domain annotation for about 19000 genes.
The use of such tools gives a closer char-
acterisation of the interesting components
but leaves out an integration of interaction
patterns into known contexts like signaling
pathways. Here we introduce a method that
combines the result from a KEGG pathway
prediction based on InterPro domain signa-
tures and network reconstruction via DBN
from microarray data (Lebre, 2007). We
analyse the predictions to identify signifi-
cantly overrepresented KEGG pathways and
integrate novel interactions found in the mi-
croarray data into the present maps.

Methods
Data preprocessing

Microarray time-course gene expression data
from Affara et al. (2007) was used. We se-
lected interesting genes in the timecourse ex-
pression data by first normalising the raw ex-
pression values by variance stabilisation nor-
malisation (VSN, Huber et al. (2002)) and
successively analysing differential gene ex-
pression with limma (Smyth, 2004). Genes
with a normalised intensity in the lower
quartile of the observed intensity range in
all timepoints were excluded from the anal-
ysis as they have noninformative expression

profiles. Each pair of time points was anal-
ysed, and genes showing an FDR (Benjamini
and Hochberg, 1995) smaller than 0.001 in
at least one of the comparisons were taken
as differentially expressed.

Predicting pathway membership

A functional characterisation of all genes on
the array was performed. We examined the
protein-domain signatures found in the In-
terPro database (Mulder et al., 2008) for
each annotated gene. This information was
mapped to a binary vector indicating the
contained protein domains. For the human
genome in the current version of the Inter-
Pro database this results in feature vectors
of size 2752 for each gene. We used these
domain signatures to predict the member-
ship of each gene to specific KEGG pathways
with a hierarchical classification scheme, im-
plemented in the R-package gene2pathway
(Fröhlich et al., 2008).

The package explicitely takes into ac-
count the hierarchical organisation of the
KEGG database. We expect to have more
accurate predictions on the top level of the
KEGG hierarchy (Metabolism, Genetic In-
formation Processing, Enviromental Infor-
mation Processing, Cellular Processes) than
at the bottom level of individual pathways.
It is worth mentioning that gene2pathway
can predict a mapping of a gene to multi-
ple pathways at once. Furthermore, each
prediction is accompanied with a confidence
score between 0 and 1, which results from
running the classification model within a
bagging scheme.

Analysis of overrepresentation of specific
pathways

An analysis of overrepresentation of pre-
dicted pathways in the set of differentially
expressed genes was performed, as described
in Beissbarth (2006). We defined two groups,
one containing the genes which were found to
be annotated in KEGG, and a second group
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of genes for which additionally the domain-
signature prediction was included. Fisher’s
Exact Test was used to assess statistical sig-
nificance and a multiple testing correction
with Benjamini-Hochberg’s method was per-
formed.

Network reconstruction with dynamical
bayesian networks

In time-course datasets the number of ob-
served genes p is usually much higher than
the number of timepoints n. To deal with
this situation, Lebre (2007) developed a
method for inferring DBNs for the p >> n
situation that represent full-order condi-
tional dependencies. The method is avail-
able in an R-package G1DBN that was used
for the calculation. In this approach, in-
ference of the DBN happens in a two step
procedure. First, a preliminary edge selec-
tion based on first order conditional depen-
dencies between the variables is performed,
giving a DAG (directed acyclic graph) G(1).
The key assumption here is, that the true
DAG G̃ is a subgraph of G(1). So in the sec-
ond step, G̃ is inferred from G(1) by deter-
mining the full-order conditional dependen-
cies among the edges in G(1). We chose the
set of all differentially expressed genes being
predicted or known members of a particular
pathway and extracted the expression pro-
files from the time-course data. Then the re-
construction was performed with parameters
α1 = 0.5 and α2 = 0.1 and a least squares
M-estimator.

Next we downloaded the Cell Cycle path-
way hsa:04110 with the KEGGSOAP R-
package. The result of the network re-
construction was merged with the Cell
Cycle KEGG pathway and compared to
a literature based interaction network,
which was generated through the use of
Ingenuity R©Pathways Analysis .

Results and Discussion
Analysis of differentially expressed genes
and enrichment analysis

As described in Affara et al. (2007) for a
pool of 10 individuals of HUVEC, RNA was
prepared at time points 0, 0.5, 1.5, 3, 6, 9,
12 and 24h and hybridised to UniSet Hu-
man 20K gene chips. Gene expression was
measured using CodeLink expression anal-
ysis software. From the 20265 genes on
the array 18310 genes were kept as informa-
tive genes (see Methods). 1002 genes were
found differentially expressed. The mapping
of the microarray’s ProbeID to the Entrez-
GeneID resulted in 14015 unique genes that
could be analysed by gene2pathway. These
were fed into the KEGG-pathway member-
ship prediction (see Methods), in which In-
terPro domains for 10630 genes were found.
3385 had pathway memberships defined by
KEGG, with 268 being differential. For 4206
genes predictions were made using the do-
main signatures and 353 of them were differ-
entially expressed.

For each of the predicted pathways
Fisher’s Exact Test was performed to find
out, whether a particular pathway was sig-
nificantly overrepresented in the sets of dif-
ferentially expressed genes. This was done
once for the genes that were directly anno-
tated in KEGG and additionally for those
that were predicted to be a member of the
pathway by their domain signature using
gene2pathway. The results are shown in ta-
ble 1.

pathname p1 p2 K DS
Cell cycle 0,0031 0,0004 22 30

Metabolism 1 0,0316 96 364
Cell Growth and Death 0,3877 0,0447 26 43
Nucleotide Metabolism 0,3159 0,0562 22 22

Insulin signaling pathway 0,3159 0,2787 2 2
... ... ... ... ...

Table 1: P-values for pathway overrepresentation: p1 for
pathway membership defined only by KEGG; p2 for path-
way membership by KEGG and domain signature predic-
tion; K: number of genes found as member of the pathway
in KEGG annotation, DS: number of genes assigned to a
pathway by KEGG and the domain signature prediction with
gene2pathway.
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A significant overrepresentation was
found for the pathways Cell Cycle,
Metabolism, Cell Growth and Death and
Nucleotide Metabolism, when gene2pathway
was used for assigning the pathway to a
gene. As seen in table 1, the significance for
the pathways is increased when the domain
signature prediction is incorporated. It also
makes sense to find the pathway Cell Cycle
and its parent map Cell Growth and Death
overrepresented, since the microarray data
originated in an apoptosis study, which is
part of Cell Death and Growth and closely
related to Cell Cycle. This suggests, that
genes from the Cell Growth and Death tier
show the highest activity in the time-course.
For further investigation and network re-
construction exactly those differentially ex-
pressed genes, that were part of the Cell Cy-
cle pathway were taken. Since Metabolism is
a branch that can hardly be distinguished by
the use of domain signatures (Hahne et al.,
2008), no further examination of these path-
ways was performed.

Reconstruction of regulatory networks us-
ing Dynamic Bayesian Networks

The R-package G1DBN was used to recon-
struct a DBN from the selected expression
profiles. The resulting interaction network
was merged with the original KEGG net-
work, shown in Figure 1. Differential genes
assigned to the Cell Cycle pathway by their
domain signature are shown in light grey,
those already contained in the KEGG anno-
tation in dark grey. The white nodes are the
remaining nodes from the original KEGG
pathway which were not found to be differ-
ential. Edges found by the DBN procedure
were verified in a literature interaction net-
work generated by the IngenuityR©software.

As it can be seen in the figure, edges
CCNE2 → CDKN1C, CDKN1C → MCM,
RBL1 → PLK1 and MCM → PLK1 were
constructed by G1DBN and verified in the

literature network. Edges CHEK → MCM,
PLK1 → CCNA2 and PLK1 → BUB1 were
found as direct edges in the G1DBN net-
work, and as indirect edges in IngenuityR©,
verifying an interaction between the compo-
nents. By identifying functional related com-
ponents with the pathway prediction and us-
ing the expression data, interactions known
by the literature could be reconstructed.
Furthermore, new interactions are found,
e.g. NASP → PLK1, NASP → MCM or
UACA → BUB1. NASP is a histone bind-
ing protein which is expressed in dividing
cells. UACA regulates morphological alter-
ations required for cell growth and motility
and PLK1, MCM and BUB1 are well known
components in the cell cycle pathway.

Conclusions
We propose an application of an integra-
tive approach, in which pathway member-
ship prediction and reconstruction of DBNs
are combined to predict new interactions in
well known pathway contexts. We demon-
strate the use of the domain signature pre-
diction for interpretation of a microarray
dataset. Instead of analysing all differen-
tially expressed genes at once, we show how
to separate the genes into sets of genes be-
longing together as identified by their func-
tional characterisation. Our approach shows
good concordance with literature knowledge
and suggests new components as well as their
putative placement in the known pathways.
The methods will be made available in the
R-package gene2pathway.
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Figure 1: DBN network merged with the Cell Cycle KEGG network hsa:04110. White nodes are nodes only present in the
KEGG network, dark grey nodes are present in both the DBN and KEGG network and light grey nodes are only in the DBN
net. Dashed grey edges are found in KEGG, solid grey edges are predicted by the DBN and solid black edges are predictions
that could be verified by the Ingenuity R©literature network.
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1 Introduction

State space models are increasingly popular in the area of microarray time-
course analysis. These models represent large-dimensional data and parameters
as points (states) in large-dimensional spaces, for which interaction and depen-
dencies are appropriately defined. These models, particularly in the case of
dynamic Bayesian networks (DBNs), are well-suited for capturing the behav-
ior of data in time-course experiments and drawing conclusions about genetic
interactions.[1, 4, 6]

Dynamic Bayesian networks are simply standard Bayesian networks com-
bined with a time dimension. In these networks, there is one element (node)
in the model for each gene at each time point. Often, this means hundreds or
thousands of nodes in the network. A standard assumption, to ensure the defin-
ability of the model, is that all directed edges lead from nodes in one time point
to nodes in the next. In other words, while standard (static) Bayesian networks
with nodes representing genes run the risk of containing directed cycles as we
attempt to infer which edges are most likely, DBNs circumvent this problem by
allowing edges only from one time point to the next. For example, data points
in time point 1, influence only the data points in time point 2, which in turn
only influence time point 3, and so on. This has the desirable effect that, by
definition, no directed cycles are introduced into the network graph, and fur-
thermore that the element of time is introduced so that the past influences the
present, and the present influences the future, with respect to a particular time
point.[6]

However, these models are ignoring that some genes may be influenced by
other genes within the same time point, and not just the genes from the previ-
ous time point. For instance, the time course data presented in Affara, et al.[1]
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contains samples from time points 0, 0.5, 1.5, 3, 6, 9, 12, and 24 hours in an
experiment monitoring human endothelial cells during the process of apoptosis.
The smallest interval between samples is thirty minutes, while the average in-
terval between samples is over three hours. Some gene-related reactions have
been shown to operate on a shorter time-scale than that.[5, 2] While time-series
experiments are generally designed considering the appropriate time-scale for
the given organism and cell type, there is a significant chance that some RNA
activity occurs at a rate fast enough to be unobservable in the design. That is
to say that, if some gene can be activated or deactivated over a period of five
or ten minutes, a common state space model such as in Kim et al.,[6] or Beal et
al.[4], may not be able to detect that genetic interaction, because such a quick
response may occur entirely between time points, or the expression changes of
the two genes involved may straddle a time point, thus rendering their interac-
tion undetectable. In general, undersampling can inhibit and otherwise cause
problems with gene interaction inference.[3]

Assume, for instance in the Affara data set, that two genes have an in-
teraction which operates on a time scale of approximately ten minutes. In
other words, when the expression level of gene A changes, for whatever reason,
gene B’s expression level reacts accordingly within ten minutes. If gene A’s
expression increases just before time point t, and decreases just after, the full
response of gene B will likely occur between time points t and t+1, thus render-
ing the interaction imperceptible in this case. Gene interactions operating on a
short time-scale are more likely to be detectable within each of the time points,
in a measure related to correlation, when compared to detection among rela-
tively sparse sample points. However, one problem that arises when attempting
to detect interactions within time points is that it is often very difficult, if not
impossible, to determine which gene regulates and which gene is regulated.

Thus, we build upon existing methods of inferring interactions in a DBN
setting, and include further measures to acknowledge that some genes change
expression more quickly than the data allow us to witness.

2 Methods

In order to infer fast gene interaction, we used a k-means clustering algorithm to
create groups of genes that have very similar expression patterns across the time
points. Members of a given cluster likely either (1) interact with one another
on a short time-scale, or (2) have a common regulator. In the latter case, if the
regulator operates on a short time-scale, it would be in the same cluster, and if
operating on a longer time scale, it would be in a different cluster.

Clusters are generated using a standard k-means clustering algorithm, with
the appropriate number of clusters selected according to Akaike’s information
criterion, and the assumption that cluster membership likelihood functions are
Gaussian with mean at the cluster center. Thus, an estimate of the likelihood
for the current clustering arrangement can be calculated, and we can be cer-
tain that, for the given data, algorithm reaches an optimal solution. Before
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clustering, the time profiles of the genes are normalized to the same variance.
This acknowledges and corrects for the case that two genes, even if perfectly
correlated, would not end up in the same cluster if one was much more highly
expressed than the other.

After clustering, we used the variational Bayesian (VB) algorithm for DBN
models with hidden states presented in Beal, et al.[4] to estimate the interaction
matrix between the cluster centers. This algorithm infers dependencies in a lin-
ear DBN, as in Kim, et al., [6], but with the further addition of hidden states.
That is, Beal’s model includes at each time point both observable and unob-
servable data points. The observable nodes of course represent gene expression
measurements, usually from microarrays, whereas the hidden or unobservable
nodes can represent any value in this system for which we don’t have a mea-
surement, such as genes not measured in the experiment or perhaps some sort
of non-RNA gene regulator. In Beal’s design, these hidden states are allowed to
have an influence on genes in the same time point as well as on genes and hidden
states in the following time point. In this way, directed cycles are still avoided,
while allowing some states (the hidden states) to affect other states (observed
states) within the same time point. Even though the hidden states interact
with observed states within each given time point, direct gene-gene interaction
between observable genes within a given time point is not considered. Thus,
we utilize Beal’s method, but expand it to consider interaction on a time-scale
shorter than the sampling intervals, by utilizing clustering.

The results from the variational Bayesian model estimation should indicate
which of the cluster centers interact with each other across the time points, thus
adding to our knowledge of gene interactions taking place on a longer time scale
than the sampling intervals. If we wish to see which interactions take place on
shorter time scales, we can look inside the clusters.

A possible concern would be that gene-gene interaction may not be detected
due to the genes being in the same cluster, and thus their respective nodes in
the state space model would have no chance of being connected when fitting
the model. In practice, this is no problem, because membership in the same
cluster implies a high correlation between the genes’ time profiles. A high time-
offset correlation (as in, the time profile of gene A correlates with the profile of
gene B offset by one time point), which would be present if the genes did, in
fact, have an interaction as tested by our DBN, contradicts a direct correlation.
Therefore, the strongest interactions are found by fitting the DBN in the case of
longer time-scale interactions, and by looking within clusters for genes related
to each other on shorter time scales.

3 Results and conclusion

The optimal number of clusters of the 18451 genes was 273, with the smallest
cluster containing 10 genes and the largest containing 225.

Upon running the VB model-fitting algorithm, we found few significant indi-
vidual interactions. In fact, only 3 interactions were discovered at a significance
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level of P < 0.05, and 14 interactions at P < 0.25. While this is somewhat
unfortunate, it is also to be expected. When fitting a model to discover the
dynamics of 273 cluster centers, there are 273 ∗ 272 = 74, 256 possible edges,
meaning not only that we are trying to fit very large numbers of parameters at
once, but also that there are many possible combinations of those parameters
that could be equally likely. Of course, the three cluster-cluster interactions in-
dicate that there are many gene-gene interactions, as all of the genes in a given
cluster can have a joint influence on the genes of another cluster.

The three strongest interactions, those having significance P < 0.05, are
found at edges 40 → 83, 61 → 83, and 128 → 164, (where the num-
bers are arbitrary cluster labels for the 273 clusters) with significance P <
0.0005, P < 0.0010, and P < 0.0500, respectively. None of the clusters 40, 61,
or 128 have any parent clusters of any reasonable significance in the model.
Thus, we have a strong reason to believe that the genes in clusters 40, 61,
and 128 play important roles as the earliest and strongest-acting regulators of
apoptosis. It would seem that cluster 83 plays a later role in apoptosis, acti-
vating after the main regulators. The accession numbers for clusters 40, 61,
and 83 can be found in an addendum to this paper. Clearly, there are many
genes in each cluster, and the list may be too long to be fully tested in apoptosis
regulation. But, in the data set studied, the genes within each cluster are highly
correlated with each other, and it is likely that the task of determining regula-
tors within a given cluster is impossible, given the data set. An algorithm such
as that used here would require more sampling points in the data collection to
be able to distinguish between genes within the clusters.

As reported in Affara, et al.[1], the sequence known as GABARAP had the
most number of children in a fitted state-space model. We found GABARAP
to be in cluster 138, whose most significant child in our model does no better
than P < 0.40. This does not necessarily contradict these previous results, as
we merely suggest other possible significant interactions. On the other hand,
our results agree with those in [1] in the lack of any significant parents for
GABARAP (or its cluster).

In conclusion, we present a method of detecting regulatory genes as well as
interaction between genes. The method, based on gene clustering and fitting
a dynamic Bayesian model, leaves us with three highly significant interactions
between gene groups. We propose that the genes listed as members of clus-
ters 40, 61, and 128 are likely candidates for apoptosis regulators.
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4 Gene lists

4.1 Accession numbers for cluster 40
1012837.1, AB007974, AB014514, AB040878, AF054994, AF086381, AF132811, AK057549,
AI674974, AJ133439, AK026158, AL049455, AL050152, AL122109, AL137259, BC011693,
NM 000292, NM 000297, NM 000433, NM 000633, NM 000693, NM 001231, NM 001466,
NM 001872, NM 002216, NM 003635, NM 003970, NM 004115, NM 004352, NM 004988,
NM 006157, NM 006361, NM 006565, NM 006856, NM 006875, NM 007168, NM 007237,
NM 012240, NM 014329, NM 014799, NM 015839, NM 016509, NM 016546, NM 017589,
NM 017632, NM 017772, NM 019849, NM 030820, U07561

4.2 Accession numbers for cluster 61
BG717745, AI246523, AB014542, AF232772, AK001976, AK024432, AL050143, AL512713,
NM 000236, NM 000272, NM 000275, NM 000296, NM 000855, NM 000898, NM 001407,
NM 001637, NM 001741, NM 002298, NM 002664, NM 003640, NM 004207, NM 004737,
NM 005919, NM 006225, NM 006757, NM 012260, NM 014037, NM 014400, NM 014860,
NM 014871, NM 016589, NM 017451, NM 017697, NM 018335, NM 019063, NM 024500,
U79277

4.3 Accession numbers for cluster 83
AJ249369, L38290, 1398420.5, AJ237736, BC018063, 221907.1, AL833218, NM 003385, NM 001083,
AB054575, NM 018938, BF692587, BC029526, NM 002469, AB020676, AF010236, AF131756,
AF131784, AI524085, AK000681, AK001442, AI923217, M31774, NM 000256, NM 000339,
NM 000549, NM 000740, NM 001778, NM 003293, NM 005218, NM 005291, NM 005577,
NM 006789, NM 012211, NM 014516, NM 015596, NM 017767, NM 020957, NM 022440,
NM 024492, X52001, NM 005366,
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1 The proposed analytical objective
The contest dataset describes with the response of human vascular endothelial cells (HUVEC) to serum with-

drawal, triggering apoptosis. The dataset is typical in that a complex biological phenomenon is probed by a

timecourse with only a few measurements. It provides the classical challenge to microarray data analysis of

extracting insight in a data space of very uneven dimensionalities. The challenge in this case is to identify

candidate regulators.

2 A brief summary of the analytical effort
We have adopted the strategy for ‘top-down’ regulatory network identification using the input-driven varia-

tional Bayesian state space modelling approach of Beal et al. (1) that we have successfully utilized in other

projects. State space models (SSMs) have a number of features which make them attractive for modelling gene

expression time series data. They assume the existence of a set of hidden state variables, from which noisy

continuous measurements can be made, and which evolve with Markovian dynamics. In our application, the

noisy measurements are the observed gene expression levels at each time point, and a key innovation of our

method is that we assume that the hidden variables are modelling effects which cannot be measured in a gene

expression profiling experiment. The effects of genes which have not been included on the microarray, levels

of regulatory proteins, the effects of mRNA and protein degradation are examples of such hidden variables.

3 Data Analysis
3.1 Data Normalization
Normalization is performed to reduce the systematic variation inherent to sample-array processing. There

are several normalization methods and so far none of them is considered to be a gold standard. In general,

the decision about which method to use should be based on reducing noise without affecting the biological

signal to the point of either losing a target or including too many false positives. Previous work using CodeLink

Bioarrays on a time course experiment (2) showed that median normalization (the manufacturer-recommended

approach for this this platform) does not perform as well as other approaches. In this study it is shown that

cyclic loess (pair-wise loess) performs better at reducing variability more effectively and consistently than

median normalization. To check these conclusions, we decided to analyze the performance of two methods on

the HUVEC time course data - normalization with the median and loess. This time course data consists of 8

time points and 3 pools of cells from 10 individuals, making a total of 20469 targets. Figure 1 shows density

and box plots of the raw (top), the median (middle) and the loess (bottom) normalized data. Looking at the raw



Figure 1: Density curves and boxplots for raw data (top), median-normalized data (middle) and loess-normalized data

(bottom)

intensities, it is easy to see that a normalization is required to make the arrays comparable and also standardize

their dynamic ranges. When we look at the effect of the median normalization it seems to be doing a good

job. However, if we analyze another perspective of the same data – the boxplots (middle right)– we can see

that the mean lines are not as well aligned as they are when using loess. Also, by using loess, the intensities

remain within a similar dynamic range. That is, the raw intensity values are roughly within (4, 14), which is a

fairly common case. Using the median normalization the intensities fall within (−1, 8), and negative intensity

values are physically unrealistic. However, this is easily resolved by shifting the median to the right. However,

the loess normalization approach extends the range on both the lower and upper limits by roughly one unit

and is seen to produce an approximately normal intensity distribution. This analysis is based on the consensus

information from the three pools. In our subsequent analysis, therefore, the loess normalized data were used.

After removing the probes flagged with error labels and matching the good ones in all 24 arrays, we ended up

with 9848 probes.

3.2 Differential Expression Analysis
In this analysis, we are actually concerned with differential expression over a time course. Standard methods

used to detect differential expression across two or more independent sample groups may not be appropriate

to detect differential expression in time series data, since they do not address the fact that microarray time

course samples may be correlated. Tai and Speed (3) have described a method for ranking and selecting genes

from replicated microarray time course data with one or more biological conditions, based on a multivariate

empirical Bayes log-odds score or Hotelling T 2 statistic. After normalization, this method was applied to

produce a ranking of differentially expressed genes by order of the Hotelling T 2 statistic, using the timecourse
package implemented in R/Bioconductor. Modulated expression across the time course is clearly visible in

the top ranked genes, and undetectable in the bottom ranked genes.

3.3 Network Inference
Networks were then inferred from the microarray time series data using the variational state space modelling

(VBSSM) approach of Beal et al. (1). A key feature of our approach to network inference is that it uses a

fully Bayesian analysis, which avoids overfitting and provides error bars on all model parameters. In practice,

a Bayesian learning scheme infers distributions over all the parameters and makes modelling predictions by



taking into account all possible parameter settings. In doing so we penalise models with too many parameters,

embodying an automatic Occam’s Razor effect. First, the question of how many hidden factors should be used

to account for the dependencies in the observed data is answered by employing Bayesian model selection, a

well-founded principle used in machine learning and statistics to choose between models of differing com-

plexities. The VBSSM algorithm calculates a lower bound on the marginal likelihood (Bayesian evidence), F ,

and plotting this against the dimensionality of the hidden state space, k, allows us to select an optimal model

for the data set – that which maximizes the marginal likelihood (Figure 2). The variational Bayesian model

also provides us with posterior distributions for the model parameters from which a connectivity matrix which

describes all gene-gene interactions over successive time points may be derived. Details of this procedure are

described in (1). We consider an element of this matrix as providing evidence for a candidate gene-gene inter-

action if the element’s posterior distribution is positioned significantly far from the zero point of no influence.

Significance in this scenario corresponds to the zero point being more than n standard deviations from the pos-

terior mean for that entry. Since these distributions are Gaussian, and may lie above or below the zero point

(corresponding to positive or negative regulation), we can use the standard Z-statistic for normally distributed

variables to threshold the connectivity matrix at any desired level of statistical significance. The output from

this procedure is a directed graph in which arrows are drawn from a gene expression variable at a given time t,
to another gene variable whose expression it influences at the next time point, t+1 (see Figure 3).

It should be noted that the method we describe is not a genome-wide modelling excercise. Previous

authors have already pointed out that there is a theoretical limit to our ability to infer gene regulatory networks

from data that describe the dynamics of cell response (6; 7; 8; 9). This limit is related to the amount of

data that needs to be acquired to avoid overfitting of model parameter estimates, particularly when maximum

likelihood methods are used. Our earlier studies with both synthetic and experimental data (4; 5) indicate that,

with the number of time points and biological replicates in the CAMDA data set, we would be able to model

effectively the inter-relationships of around 50 genes in one computational experiment. We have therefore

chosen to model the top 50 genes as ranked by the Hotelling T 2 statistic.

Figure 2: F versus k plot to select the optimal state space dimensionality - for this data set kmax = 2

4 Interpretation of results and presentation of discoveries in a biologi-
cal context.

In terms of the challenge, candidate regulators are identified as those genes predicted to be major hubs in

our inferred network (Figure 3). A number of these appear to be biologically plausible in the context of the

processes triggered in endothelial cells under growth factor deprivation conditions:

• CDKN1C encodes the protein known as p57/Kip2, one of the cyclin-dependent kinase inhibitor proteins

that function as negative regulators of the cell-cycle (14) and directly promote the the intrinsic apoptotic

pathway (15). Smad-mediated transcription (SMAD1 is down-regulated by MTX1 in the network) has

been shown to be involved in the induction of p57/Kip2 proteolysis (10). Although we would not expect

to observe post-translational regulation directly in our model, such information could be included as a

Bayesian prior in future cycles of modelling. One possible mechanism of SMAD1 downregulation could

be via TGF-β signaling through the receptor ALK1, which is known to be expressed constitutively in

endothelial cells (12). TGF-β signaling occurs under conditions of serum deprivation in endothelial

cells, which, in turn, attenuates apoptotic death (13).



Figure 3: Gene regulatory network for the top 50 genes as ranked by the Hotelling T 2 statistic, at a confidence level of >
99% (Z=3). Arrows represent gene-to-gene expression influences across consecutive time points: solid arrows represent

up-regulation, dotted T’s represent down-regulation.

• MT1X, another major hub, which is predicted to play a largely inhibitory role in the network, encodes a

metallothionein, a family of low molecular weight proteins with a high affinity for divalent metals. Met-

allothionein has been shown to have a protective role in apoptosis, specifically by controlling the cellular

zinc ion levels: the proper intracellular Zn2+ level maintains the fragmentation of DNA associated with

caspase-3 activity (16).

• PTGS2, better known as COX-2, is an enzyme responsible for the synthesis of the signaling lipids known

as prostaglandins. Stressful stimuli in endothelial cells have been shown to induce COX-2 expression

and activity in the form of PGE2 production, which in turn triggers the caspase-3 activity that facilitates

apoptosis (17)

• HLX1 is a homeobox gene transcription factor that has shown to regulate vascular development in

embryonic and adult tissues (21). Its role in endothelial cell apoptosis is unexplored.

• IFITM1, interferon-induced transmembrane protein 1, has been shown to influence proliferation in re-

sponse to the cytokine IFN-gamma. In our network we observe that it is predicted to play the role of an

activator of other interferon-related genes. In hepatocytes, IFITM1 overexpression negatively regulates

cell growth, whereas its suppression enhances it. Furthermore, IFITM1 inhibits the activity of extra-

cellular signal-regulated kinase (ERK) and enhances the transcriptional activity of the tumor supressor

gene p53 (22). These findings constitute a likely lead for the involvement of IFITM1 in the regulatory

network, although there is currently no published data on IFITM1 on either endothelial cells or in the

context of apoptosis.

5 Discussion

Interestingly, Hirose et al. (18) have recently published a report of an analysis of the same data set us-

ing a canonical state-space model (without input-driven feedback) and maximum likelihood parameter

estimation. They inferred a network which shows TRAF1 as a major network hub, which up-regulates

CDKN1C. TRAF1 encodes one of the TNF-receptor-associated factors, cytoplasmic adaptor proteins



that mediate cytokine signaling. The regulatory association predicted by Hirose et al. is in direct con-

tradiction to our model, which predicts TRAF1 to be up-regulated by CDKN1C. These two models,

therefore, represent contradictory, but experimentally testable hypotheses, which could be tested by

gene silencing experiments on both CDKN1C and TRAF1. We suggest that such experiments would

make an ideal follow-up to the CAMDA challenge.
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Background : Today, DNA microarrays have become common tools in many laboratories of 
molecular biology and medecine because they enable the researchers to measure the 
expression of an entire genome in a single experience. However lots of microarray data sets 
have been published without being fully exploited. 
Growing tumors are caracterized by hypoxia areas because pre-existing vasculature is 
outgrown and because new vasculature is abnormal. It is now accepted that hypoxia selects 
cancer cells able to survive and to migrate to distant organs because they exhibit a specific 
transcriptome, and thus a specific proteome. 
In an effort to find new genes involved in metastasis and expressed in hypoxia, we have re-
analysed 22 Affymetrix data sets related to our subject of interest. We attempted to get new 
reliable genes by combining several original approaches. 
 
Methods : The first step was to analyse each data set individually. We used alternative Chip 
File Definition (CDF). A CDF is a file developed by Affymetrix for each platform, that links 
several probes (probe set) to a given gene name. The probes representing the « gene » reflect 
sometimes the status of genomic databases several years ago. Since then genomic 
information, and the arguments to assign probes to probe sets have evolved and alternative 
CDFs have emerged. To pre-process the data (background correction, normalisation and 
summarization of signal values measured on a chip) we used GCRMA. And to process the 
data (statistical evaluation of the differential expression of genes between two conditions), we 
used the Window t test, a modified version of the classical Student t test. 
Out of these individual analyses, we got volcano plots, graphs showing log10 of fold change 
on the X axis and –log10 of p values (statistical significance) on the Y axis for each probe set 
on the chip. To select genes of interest for biological tests out of these volcano plots, we used 
three different apprroaches. 
The first one was to consider the most significant genes common to several data sets. We 
named this approach « the intersections ». The second approach was to select the most 
significant genes common to at least one « metastasis data set » and to at least one « hypoxia 
data set ». We named this approach « the union intersections ». The last approach was the 
meta-analysis of the data sets. Here we pre-processed and processed several data sets as one 
to increase the number of replicates and thus to gain statistical power. 
 
Results : 33 intersections were designed with different biological relevance in function of 
which data sets were included. Table 1 presents the categories of intersections (column 1), the 
number of intersections (column 2), the mean number of data sets included (column 3) and 
the mean number of genes considered to get 50 genes (our limit for in vitro tests) common to 
the data sets. Intersections provide us 704 different genes. 
 
 
 



Table 1. 
 
As for the intersections, 30 union intersections were designed. Table 2 presents the categories 
of union intersections (column 1), the number of union intersections (column 2), the mean 
number of metastasis data sets and hypoxia data sets included respectively (column 3) and the 
mean number of genes considered to get 50 genes common to the data sets. Union 
intersections provide us 245 different genes. 
 

Table 2. 
 
For the meta-analysis, 14 meta-data sets were designed. All were pre-processed using 
GCRMA and processed with the Window t test. For each meta-data sets the 50 most 
significant genes were selected providing us 406 different genes. 
Table 3 shows the number of genes common to several approaches. In total there are 117 
genes that we consider of interest. Out of these 117 genes an uneglectable proportion is 
involved in metastasis confirming the validity of our approach. The future directions of this 
work are to learn more about the 117 genes in order to select 50 of them to test their 
expression in vitro. 
 

Table 3. 
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Categories Intersections Data sets Genes

Chip model 20 8 4892

Condition 5 13 16464

Tissue 7 3 1829

Total 1 20 22830

Categories Union intersections Data sets Genes

Chip model 19 8 U 3 184

Condition 4 16 U 3 129

Tissue 7 3 U 3 297

Methods Genes

Intersections / Union intersections 9

Intersections / Meta-analysis 107

Union intersections / Meta-analysis 3

Intersections / Union intersections / Meta-analysis 1
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Abstract�

Background:�The�problem�of�inferring�accurate�quantitative�estimates�of�transcript�abundances�from�
gene�expression�microarray�data�is�addressed.�Particular�attention�is�paid�to�correcting�chip�to�chip�
variations� arising� mainly� as� a� result� of� unwanted� non�specific� background� hybridization,� to� give�
transcript�abundances�measured� in�a�common�scale.�This�study�verifies�and�generalizes�a�model�of�
the�mutual� dependence� between� non�specific� background� hybridization� and� the� sensitivity� of� the�
specific�signal�using�an�approach�based�on�the�physical�chemistry�of�surface�hybridization.�

Results:� We� have� analyzed� GeneChip� oligonucleotide� microarray� data� taken� from� a� set� of� five�
benchmark� experiments� including� dilution,� Latin� Square� and� “Golden� Spike”� designs.� Our� analysis�
concentrates�on�the�important�effect�of�changes�in�the�unwanted�non�specific�background�inherent�
in�the�technology�due�to�changes�in�total�RNA�target�concentration�and/or�composition.�We�find�that�
incremental� changes� in� non�specific� background� entail� opposite� sign� incremental� changes� in� the�
effective� specific� binding� constant.� This� effect,�which�we� refer� to� as� the� “up�down”� effect,� results�
from�the�subtle�interplay�of�competing�interactions�between�the�probes�and�specific�and�non�specific�
targets�at�the�chip�surface�and�in�bulk�solution.�We�propose�special�rules�for�proper�normalization�of�
expression�values�considering�the�specifics�of�the�up�down�effect.�Particularly�for�normalization�one�
has� to� level� the� expression� values� of� invariant� expressed� probes.� Existing� heuristic� normalization�
techniques�which�do�not�exclude�absent�probes,�level�intensities�instead�of�expression�values�and/or�
use�low�variance�criteria�for�identifying�invariant�sets�of�probes�lead�to�biased�results.�Strengths�and�
pitfalls� of� selected� normalization�methods� are� discussed.� �We� also� find� that� the� extent� of� the� up�
down�effect�is�modified�if�RNA�targets�are�replaced�by�DNA�targets,�in�that�microarray�sensitivity�and�
specificity� are� improved� via� a� decrease� in� non�specific� background,� which� effectively� amplifies�
specific�binding.���

Conclusions:� The� results� emphasize� the� importance� of� physico�chemical� approaches� for� improving�
heuristic�normalization�algorithms�to�proceed�towards�quantitative�microarray�data�analysis.�
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Background:� The� improvement� of� microarray� calibration� methods� is� an� essential� prerequisite� for�
quantitative� expression� analysis.� This� issue� requires� the� formulation� of� an� appropriate� model�
describing� the� basic� relationship� between� the� probe� intensity� and� the� specific� transcript�
concentration�in�a�complex�environment�of�competing�interactions,�the�estimation�of�the�magnitude�
these� effects� and� their� correction� using� the� intensity� information� of� a� given� chip� and,� finally� the�
development� of� practicable� algorithms� which� judge� the� quality� of� a� particular� hybridization� and�
estimate�the�expression�degree�from�the�intensity�values.��

Results:�We� present� the� so�called� hook�calibration� method� which� co�processes� the� log�difference�
(delta)�and�–sum�(sigma)�of�the�perfect�match�(PM)�and�mismatch�(MM)�probe�intensities.�The�MM�
probes�are�utilized�as�an�internal�reference�which�is�subjected�to�the�same�hybridization�law�as�the�
PM,� however�with�modified� characteristics.� After� sequence�specific� affinity� correction� the�method�
fits� the� Langmuir�adsorption� model� to� the� smoothed� delta�versus�sigma� plot.� The� geometrical�
dimensions�of� this�so�called�hook�curve�characterize�the�particular�hybridization� in�terms�of�simple�
geometric�parameters�which�provide�information�about�the�mean�non�specific�background�intensity,�
the� saturation� value,� the� mean� PM/MM�sensitivity� gain� and� the� fraction� of� absent� probes.� This�
graphical�summary�spans�a�metrics�system�for�expression�estimates�in�natural�units�such�as�the�mean�
binding� constants� and� the� occupancy� of� the� probe� spots.� The�method� is� single�chip� based,� i.e.� it�
separately�uses�the�intensities�for�each�selected�chip.��

Conclusions:� The� hook�method� corrects� the� raw� intensities� for� the� non�specific� background�
hybridization� in� a� sequence�specific� manner,� for� the� potential� saturation� of� the� probe�spots� with�
bound� transcripts� and� for� the� sequence�specific� binding� of� specific� transcripts.� The� obtained� chip�
characteristics� in� combination� with� the� sensitivity� corrected� probe�intensity� values� provide�
expression� estimates� scaled� in� natural� units� which� are� given� by� the� binding� constants� of� the�
particular�hybridization.��

�

�
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EMERALD is  a  European Coordination  Action  to  develop  measures  to 
improve microarray data quality.
Microarray-based functional  genomics technology suffers  from a lack of 
standards.  We  are  establishing  and  disseminate  quality  metrics, 
microarray  standards  and  best  laboratory  practices  throughout  the 
European  microarray  community.  We  have  developed  specific  quality 
metrics software (http://www.microarray-quality.org/quality_metrics.html), 
and  we  develop  a  Normalisation  and  Transformation  ontology 
(http://www.microarray-quality.org/ontology_work.html)  to  allow  for  a 
structured recording of data pre-processing. The quality metrics software 
is being used to select high quality microarray (compendium) data from 
public databases. We expect that such quality-selected data will provide a 
valuable source for systems biology approaches like network inference and 
reverse engineering.
We hope to initiate European efforts to assess the merits of hybridisation 
standards for QC, and launch procedures to certify selected standards as 
European  Reference  Material.  We are  uniting  the  different  microarray 
technology stakeholders in a series of  topical workshops to address the 
development  and  implementation  of  QA/QC  in  research,  service, 
diagnostics, data pre-processing and archiving, computational datamining, 
new technology development and its exploitation. We strive toward a wide 
community  acceptance  of  ‘best  practices’.  A  web  portal  at  EBI 
(http://www.microarray-quality.org/index.html)  presents  a  network  of 
contacts, and will serve to disseminate protocols, data, the use of control 
material, etc. We will assist individual microarray users in their transfer 
to such common practices. The results and experiences from transcriptome 
microarray QA/QC will create a cornerstone for a systems biology based 
life  science,  and  cross-fertilise  and  advance  the  maturation  process  of 
emerging applications of microarray technology.
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Because of the relative high price of microarrays chips, microarrays experiments are often 

performed with a low number of replicates. Several methods were developped to handle this 

limitation, most of them taking into account the high number of probes on a chip to otbain a 

better estimation of the variance by moderating the error accross probes. Beside these low 

replicate experiments, there is a demand for methods allowing the analysis of one chip per 

condition. These experiments are expected to serve as preliminary analysis for further chip or 

bench experiments, as no biological nor technical replicates are included.  

Statistically, there is no way to compute a variance from one measure, meaning that the only 

way to analyse these experiments is to use of the FoldChange as a ranker. However, several 

methods exists to handle such experiments, taking advantage of the multiple probes per 

probesets present on chips like Affymetrix. These probes are usually summarized in one 

expression value per probeset, but can be used as is to allow a variance estimation.  

The aim of  this work was to compare several available methods (Foldchange, anova at probe-

level [1], S-score [2], EBarrays [3], and PPLR [4]) handling one-chip design and to address 

some questions about the dataset- and the chip pair-dependence of results, and about the 

performance of such methods when used with replicate chips.  

To assess method efficiencies, we used 2 spike-in experiments, chosen to have different 

characteristics, preprocessed and analyzed data, and derived values of True Positive Rate and 

False Discovery Rate for several alpha thresholds in order to build FDRoc curves.  

The figure 1 outlines the main results of our study. It shows that results are very different with 

respect to the dataset used, which was expected from their very divergent characteristics. 

However method ranks are globally consistent between datasets. The comparison of curves 

obtained with several chip pairs shows that some methods are very chip-pair dependent, while 

datasets comprise only technical replicates. The figure 2 shows that, while not a statistical 

method, the simple computation of the Foldchange provides good results.  



 

Figure 1 Choe and LatinSquare datasets: FDRoc curves for 1-chip design. For each 

dataset, 3 chip-pairs are considered. 

 

In addition, we evaluate the efficiency of these methods when used with several replicates, 

and compare them to T and Baldi's regularized T tests [5]. We find curves ranks similars to 

those obtained with one chip, but methods generally do not outperformed Baldi's regularized 

T test.  

Further work will include tests on simulated probe-level data. 
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R is the leading open source statistic software with a vast number of analysis 
packages  which  are  developed  by  a  large  user  community  (>100,000  users). 
However, the use of R requires programming skills.  We have developed a GUI 
generator for R scripts based on a GUI definition language in XML. A GUI is 
generated by adding predefined GUI tags to the R script. User-GUI interactions 
are  converted  to  R  –  Code,  which  replace  the  xml-tags  in  the  R  script.  The 
project’s aim is to provide R developers with a tool to make R based statistical 
computing  available  to  a  wider  audience  less  familiar  with  script  based 
programming.  RGG can also benefit experienced R programmers by enabling to 
make regular changes to the code via a GUI interface (e.g. setting of an input file 
path via file chooser). RGG is a powerful tool to combine the advantages of script 
and GUI based computing while maintaining high flexibility. We showcase the 
utility of RGG using our Microarray Import and Normalisation Device (MIND), 
which  imports  Microarray  data,  lets  the  user  choose  the  preprocessing 
procedures,  produces  a  variety  of  QC  plots  and  performs  some  explorative 
statistics. GUIs for inference statistics and machine learning are also available. 
The project further includes the development of a repository and documentation 
system for R-GUIs being developed by community.
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DNA microarray  technology has  become a  well-established,  powerful  high-throughput 
tool  in  biological  research.  Despite  the  huge  success  of  microarray  analyses,  the 
interpretation of gene expression data remains a challenge. Many modern methods for 
microarray data analysis aim to detect biologically meaningful patterns or signatures in 
the data, and thus particularly rely on accurate measurements. Highly specific probes 
with  uniform  hybridization  behaviour  are  therefore  crucial  for  accurate  quantitative 
modelling and further advancement of  inference methods in microarray analysis.  The 
main challenge in high-performance microarray design is the selection of highly specific 
oligonucleotide  probes  for  all  targeted  genes  of  interest  while,  at  the  same  time, 
maintaining  thermodynamic  probe  uniformity.  We  introduce  and  describe  a  novel 
microarray  design  framework  incorporating  several  advanced  features  for  improved 
microarray performance and genome-scale designs. Our method improves on a number of 
aspects  central  to  probe  design:  A  quantitative  model  captures  experimentally 
determined effects of probe placement along the target on labelling efficiency. In addition, 
the prediction of probe--target hybridization was improved by considering both probe and 
target  structure.  For  efficiency,  probe cross-hybridization  predictions  on genome scale 
usually  exploit  fast  sequence-similarity  based  heuristics  as  filter  before  employing 
thermodynamic models. Of course, this brings a necessary trade-off between speed and 
sensitivity. There have, however, been no published studies so far examining the degree to 
which these heuristics may miss cross-hybridization targets. We present the results of a 
rigorous  calibration  of  sequence  based  heuristics  through  sensitive  thermodynamic 
calculations. The calibrated heuristic can then serve as conservative filter. Finally, we 
formulate a novel compound score, combining all probe features calculated in a principled 
way. This permits an objective selection of discriminative probe candidates while, at the 
same time, maintaining probe uniformity. By applying full global set optimization rather 
than a greedy search, our approach delivers maximally specific and unusually uniform 
probe sets. We demonstrate the performance of our novel probe design framework using 
results from different genomes. 
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DNA microarrays  are  regarded  as  a  valuable  tool  for  basic  and  applied  research  in 
microbiology.  However,  for  many  industrially  important  microorganisms,  such  as  the 
yeast  Pichia  pastoris,  the  lack  of  commercially  available  microarrays  still  hampers 
physiological research. Presently, our understanding of protein secretion in P. pastoris is 
widely dependent on conclusions drawn from analogies to  Saccharomyces cerevisiae. To 
close this gap for a yeast species employed for its high capacity to produce heterologous 
proteins, we developed whole genome DNA microarrays for  P. pastoris on the basis of a 
commercially available draft genome. Up to date NCBI contains only 13 mRNAs and 158 
genomic DNA/RNA sequences for  P. pastoris,  a commercially available gene prediction 
contained 5425 ORFs of which 3677 had an assigned function. This starting set of genes 
was complemented through de-novo gene finding and annotated using BLAST with a 
reciprocal best hit strategy. For the resulting set of candidate genes oligos were design 
using Agilent’s online service (eArray) as well as a second program called TherMODO[1]. 
Both oligo designs were used in a stress response experiment and compared to results 
from a similar experiment with S. cerevisiae [2].

For the two oligo design strategies, we evaluated sensitivity to cross-hybridization as well 
as Tm (melting temperature) and delta G (free energy) distribution of probes. TherMODO 
designed probes for 15,035 sequences, of which only 665 were predicted as having cross-
hybridization potential. Agilent’s eArray designed probes for 15,150 sequences, of which 
617 were marked for a cross-hybridization risk. TherMODO proofed to be more sensitive, 
filtering out sequences that were too short or had a certain amount of N nucleotides as 
well  as  finding  more  sequences  that  contained  a  potential  cross-hyb  risk.  The 
distributions of DG and Tm of both designs as shown in figure 1 on the poster clearly that 

TherMODO designed probes are more uniform with respect to the Gibbs free energy DG 
and melting temperature, indicating a superior hybridization performance.



The microarrays made it for the first time possible to study genome-wide regulation in 
the  important  protein  production  host  P.  pastoris,  giving  novel  insights  into  UPR 
regulation patterns [3]. The differences observed between  P. pastoris and  S. cerevisiae 
once  again  underline  the  importance  of  DNA  microarrays  for  industrial  production 
strains, instead of drawing conclusions from model organisms. Overexpression of HAC1, 
the most direct control for UPR genes, resulted in significant new understanding of this 
important regulatory pathway in P. pastoris, and generally in yeasts.

[1] Leparc et al. 2008. Nucleic Acid Research.
[2] Travers et al. 2000. Cell 101(3): 249-258.
[3] Graf et al. 2008. BMC Genomics 9:390.
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