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Introduction

Modern high-throughput genomic technologies have al-
lowed large-scale characterization of living organisms, in-
volving the generation and interpretation of data at an un-
precedented scale. Computational tools and mathematical
algorithms have been created aiming to integrate, organize
and mine the wealth of information generated. Technologies
for the detection of different types of genomic alterations
have been developed and applied to analyses of almost any
living organism, but also of cancer genomes. In cancer re-
search in particular, It is clear now that studies based on a
single technology platform are limited compared with the
extent of knowledge that can be acquired when using differ-
ent platforms all together. Hence, there is a need for sys-
tematic methodologies to facilitate data management, visu-
alization and integration. Such methodologies should aim
to permit a proper analysis of the biological implications for
the findings, without sacrificing mathematical and statisti-
cal rigour and computational efficiency. The present three-
state model for multidimensional data integration (3-MDI,
in short), a data driven approach, has been designed and im-
plemented with such purpose in mind.

Materials and Methods

The Cancer Genome Atlas Network (TCGA) offers a variety
of datasets including expression profiling, targeted sequenc-
ing and copy number of a large number of tumor and normal
samples of Glioblastoma Multiforme (GBM). Low-level
analyses, classification and selection for all platforms in-
cluding quality control, background correction analysis and
normalization were performed using [R] and BioConductor.

Level 1 mRNA Low level analysis of raw gene expression
microarray data generated from Affymetrix HGU133A of
495 tumor samples and 10 controls were normalized using
quantile normalization [1] and summarized using median
polish, both methods from the affy library. Classification
was based on log fold-change, B-statistic and adjusted p-

values using limma package.

Level 2 miRNA Agilent miRNA 8x15K, of 245 tumor sam-
ples and 10 controls. According to TCGA portal data were
background corrected using RMA and quantile normalized.
It was not clear whether the controls and the tumors were
normalized together and since boxplots of the data showed
a discrepancy between the groups all samples were normal-
ized using median absolute deviation (MAD)

Level 3 CNVs Data for 461 samples processed with array
CGH technology. Data reported to be lowess normalized.
Regions of gain and loss were identified using Circular Bi-
nary Segmentation algorithm.

Level 2 Meth Methylation data from 291 tumor samples
and 1 control with 6 replicates were normalized and pro-
cessed using genome wide Infinium HumanMethylation27
BeadChip Array (Illumina, Inc., San Diego, CA, USA) with
27,578 CpG sites. Beta-values and confidence p-values were
further examined. Missing beta-values were calculated us-
ing the signal intensity (M) and the unmethylated signal
intensity (U).

Level 3 NGS Sequencing data of somatic nucleotide alter-
ation data for 143 samples in 3 databases were analyzed.
The three databases were combined and relevant mutations
were selected. The final database contained 1032 unique
gene-mutation pairs, for 500 different genes and 7 different
mutation types: Missense, Frame Shift, Silent, Nonsense,
In Frame, Splice Site and Unknown.

Strategy for integrative analysis

To construct an integrated view of genomic alterations, that
here we apply to the glioblastoma genome; we propose a
data driven combinatorial approach that lists all possible
scenarios of genomic alterations in a N-platform integrative
analysis based on a three-state model applied to statistically
significant genes (3-MDI). Each scenario is represented as a
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sequence S1,S2, ...SN of states, where Sk denotes the state of
a gene for platform k. Each state is defined to take values in
{-1, 0, 1} interpreted as {Down, NoChange, Up}. This list
represents the universe of hypotheses that describe structural
variations in the genome as well as transcription activity in
coding and non-coding regions. Hypotheses can be chosen
for their clear biological relevance but also for their quan-
titative importance. We may find that a large set of genes
follow a particular scenario or that genes commonly share
a set of more specific scenarios leading to other important
questions to be answered.

For every platform, low-level analysis was carefully per-
formed, genes were classified according to the proper sig-
nificance levels for each technology. The platforms (P) se-
lected included {mRNA, miRNA, Methylation, NGS, CNV},
a list of highly relevant genes was generated from each one.
Genes in every list were coded according to two of the three
states in the three-state model. In every list of top-mk genes
can be either up {1} or down {-1}. All k lists are combined
and basic set theory Pi ∪Pj = (Pi ∩Pj)∪ (Pi \Pj)∪ (Pj \Pi)
adds zeros when (Pi \Pj) indicates a zero in Pj. Using these
approach the combinatorial analysis can classify all possible
scenarios searching for genes in 2,3,4, or all 5 platforms
simultaneously.

Under this approach there exist 3k possible scenarios for
a k-platform analysis assuming a three-state model. If we
wish to perform a more exhaustive analysis adding levels of
information by including a new platform at every level of
the analysis, we would have ∑

h
i=1

(k
h

)
possible combinations

of (k) platforms, giving us a total of

h

∑
h=1

3k
(

k
h

)
Even though the hypothesis space grows it is clear that we
may not find the full list of scenarios for various reasons:
• There are scenarios whose sequence of states is non-
informative. For instance, any of the {0, 00,000, 0000,
00000} which basically reports no change in any platform.
• There will be scenarios with an empty set
• Finally, some scenarios may not have a true biological
meaning. For which in further detail may be used to detect
possible false positives

Finite alphabet classification and supervised learn-
ing

It should be noted that the discretization scheme proposed
here (a three-state model) is, within the limitations of such

model, a finite alphabet classification scheme. This means
that all of the possible states of the system correspond to a
realization or string constructed within the lexicon of such
finite alphabet (here the states are labelled −1 meaning sub-
regulated, hypomethylated or deleted, 0 meaning no change
and +1 meaning over-expressed, hypermethylated or dupli-
cated (multiplicated)) are considered, i.e. the sample space
is exhaustive. Finite alphabet classification schemes have
been shown to be equivalent to a class of machine learn-
ing algorithms called Supervised learning [7], this means
that most (in theory, all) of the supervised machine learn-
ing techniques and algorithms could be applied to train our
three-state model with either experimental or simulated data.
This could result highly useful when assessing the findings
of an integrative genomics study either with other experi-
mental sources or with synthetic data.

Results

Level 1 and Level 2 data sets were pre-processed and targets
were selected based on the following statistics:

Meth mRNA miRNA
No. 972 2971 91
logFCh (0,1) (-4.6, 3.4) (-0.85, 1.32)
B-stat (0,266) (0, 412) na
adj-p (3E-117, 7.3E-4) (1.4E-180, 2.5E-4) na
p-value (3.4E-121, 6.9E-5) na (0.0068, 0.406)

Selected targets for mRNA and methylation were coded with
the three-state model and combined with the level 3 somatic
mutations data set into a single list. The list of somatic
mutations was re-arranged by genes and coded in a 2-state
format {0,1} indicating presence or absence of mutation to
avoid an ad-hoc threshold for a classification of hypo/hyper
mutated.

Figure 1. Each bar represents the number of genes present in each
scenario, labels on the x-axis represent the status of genes in each of the
three platforms chosen. So, {1,0,-1} indicates that 71 genes have muta-
tions, do not report changes in methylation and were down-regulated.
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Using these three platforms we could find up to 18 possi-
ble scenarios for further analysis. As can be seen in Figure
1, differential changes by single platform take the larger
counts, and numbers are lower when platforms are com-
bined.
Scenarios with presence of somatic mutations were selected
and that led to 6 different ones with only one with 0 targets
reported.

Mutation Methylation mRNA Total of genes
1 0 1 62
1 0 -1 71
1 1 1 1
1 -1 -1 6
1 -1 1 3
1 1 -1 0

The combined list with 143 genes was furthered analyzed
for mutation type, mutation rate, miRNAs associated, copy
number aberrations and enrichment analysis. The top 10
in the list ordered by mutation rate included: TP53(38),
EGFR(17), RB1(11), PIK3R1(11), SYNE1(7), BCL11A(6),
FN1(5), PRKDC(5), COL3A1(4), MSHG(4)

Visualization of large-scale data becomes a key aspect of
the analysis, it allows to distinguish possible biological hy-
potheses. A circos plot helps us to identify the most mutated
chromosomes, identifying genes in each chromosome and
hence combine the differential expression and methylation
for the set under study.

Figure 2. Circos plot showing the most mutated chromosomes. The
outside ring shows the cytogenetic bands of the chromosome, the second

ring shows mRNA differential expression. The third ring shows
mutation rate histograms and the last one differential expression of

methylated genes.

The list of genes specifying the mutation types as well as
differential expression and changes in methylation is dis-

played in Figure 3. The correlation of the three platforms is
now combined with the different type of mutations shown in
a color heatmap. The barplot on the left shows the log fold-
changes of differential expression for the significant genes.
The right barplot shows the log fold-change for methylated
genes. On the bottom are patients which allows us to iden-
tify individuals with a large number of genes with mutations.

Figure 3. Graphical representation of changes in gene expression,
methylation and mutation type per gene, per tumor.

An extra dimension with clinical data can be added on the
top of the heatmap in Figure 3 providing with more layers of
information in a single plot.

DNA Methylation-miRNA Network analysis

3-MID model explore the relationship between miRNA ex-
pression levels and DNA gene methylation status in CpG
islands comparing different conditions (tumor vs normal).
The Network analysis shows eleven miRNAs highly related
(putative Target) to genes over-represented with changes in
the CpG methylation status. Four databases were used to
map mRNA genes with miRNA targets: Targetscan, Mi-
randa, Pictar and Mirbase; relationships with consistency
of 3 of 4 databases were selected. Pathway enrichment
analysis shows only a few pathways significantly related to
biological processes likely involved in neuronal functions
(eg. Axon guidance, synaptical transmission). The 3-MDI
model presents several options of novel configurations for
genomics analysis using the state matrix design. Some of
them may not have an apparent biological interpretation but
perhaps the combination of some could lead to new hypothe-
ses.
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In this case, configuration of the 3-MDI models could sug-
gest that DNA methylation and modifying expression by
miRNA are closely related by a particular states combi-
nation which corresponding to a biological characteristic
pattern. Biological information could be drawn from this
analysis showing that different intersections can be estab-
lished for new approaches to the glioblastoma studies. For
example new gene pathways regulated by concerted mecha-
nism between miRNAS and DNA methylation.

Figure 4. Network of the selected set of 143 genes. Green nodes
represent miRNAs and gray nodes represent genes

Enrichment analysis

Pathway enrichment analysis was studied by means of sta-
tistical over-representation of Pathway entries in the Reac-
tome databases for the set of 143 genes. Significance as-
sessment was made by means of ‘urn model hypergeometric
distribution tests. Here, testing a pathway amounts to draw-
ing the genes annotated at it from the urn (gene universe)
and classifying them as to whether they belong to a certain
pathway or not. Then by counting and calculating the re-
sulting proportions we can perform a significance test, in
this case the hypergeometric test (which is equivalent to a
one-tailed Fisher’s Exact test). In order to correct for mul-
tiple testing we used the Benjamini-Hochberg algorithm or
False Discovery rate (FDR) [8]. Only associations with cor-
rected p-values below 0.05 were considered significant. The
most significant pathways (p-values in parenthesis) included
Hemostasis (1.75E-05), Formation of Platelet plug (5.64E-
05), Cell surface interactions at the vascular wall (7.71E-
05), ATM mediated response to DNA double-strand break
(3.55E-05), Axon guidance (0.0127) among a larger list.

Discussion

3-MDI as a tool for finding integrative effects in genomic
regulation

As we already stated 3-MDI can predict several kinds of
novel configurations for genomics analysis, incorporating
two or more sceneries taken from the state matrix design.
Hence, biological information could be drawn from this
analysis showing that different intersections can be estab-
lished for new approaches to the glioblastoma studies. For
example, new gene pathways regulated by concerted mech-
anism between miRNAS and DNA methylation.
By using 3-MDI we have explored the combined effect that
miRNA differential expression levels and DNA gene methy-
lation status in CpG islands have on differential gene ex-
pression by comparing different conditions (tumor vs nor-
mal) in a network based analysis. Results (as showed in
Figure 4 could suggest that DNA methylation and miRNA
transcriptional regulation are closely related for a particu-
lar state-vector representing a novel characteristic pattern.
For instance, this analysis shows eleven miRNAs related (as
putative targets) to genes over-represented with respect to
changes in the CpG methylation status. That is, genes whose
methylation profiles and miRNA targeting status may po-
tentially affect their corresponding mRNA expression lev-
els. Pathway enrichment analysis using GO for this set of 11
genes shows only a few pathways significantly enriched in
biological processes. It is interesting to notice that they were
mainly involved in neuronal functions (eg. Axon guidance,
synaptical transmission).

Noise classification

In order to build proper schemes of data integration and anal-
ysis, an important issue (especially for statistical and prob-
abilistic modeling) is that of inferring the role that different
kinds of noise will play and how these effects aggregate in
the integrated setting. It has been possible to distinguish at
least five different sources of noise/variability in the consid-
ered ’omics experiments:
• Technical processing noise
• Biological intersample variability
• Batch effects
• Bimodal distributions between already normalized
cases/controls
• Dynamic range incommensurability between different
technologies
A proper characterization of noise in these instances would
greatly improve the performance of integrative schemes for
massive datasets such as the ones considered here.
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Relative importance of the findings and probability mea-
sures

In order to compare the relative effect that different genomic
variations could have on different phenotypes (say, diseased
Vs healthy conditions, tumor progression stages, types of
tumor and so on) we need to take into account the fact that
the dynamic ranges of the quantitative measurements differ
dramatically. For example, in the case of gene expression
experiments, intensity levels or even gene expression sig-
nals show a great variability with regards to its range, in-
cluding positive and negative values of the indicators (e.g.
log2-ratios of fold-change) under a non-symmetrical distri-
bution, whereas in the case of methylation profiles, these
are usually characterized by using a β -value as an indica-
tor. β -values are Borel-normalized (i,e, β ∈B[0,1]). In the
other hand, mutation rates and copy number variations also
present highly dissimilar dynamic ranges. It appears obvious
that these quantitative measurements could not be compared
directly with each other so as to establish relative importance
for a given phenotype under a systematic (computationally
tractable) integrative scheme.
Our purpose is to normalize the different indicators by using
the experiment-wise empirical distributions, i.e. by setting
the scale such that if x is a non-normalized indicator with
realizations or measurements xi, then its normalized version
would have a scale ranging between 0∼ minxi

maxxi
and 1∼ maxxi

maxxi
and then normalizing all other values by homogeneous dis-
tribution over this scale.

Normalized mutation rates

Most of the methods used to characterize mutation rates in
NGS experiments, report mutations on an individual gene or
chromosomal segment basis. Yet, if we consider the wide
range of size of genes and chromosomes, it may be more ap-
propriate to report mutation rates on a size-normalized scale.
As other groups already take this into account.

CpG islands and methylation profiles

An interesting analysis that could be done to undercover dif-
ferent patterns of epigenetic activity, would be the third-way
combined study of gene expression, methylation profiles and
CpG island structure (from NGS experiments). This could
be implemented either for a set of well known epigenetically
driven cancer genes or on a whole-genome basis. However
due to the fact that CAMDA-challenge available datasets
due not include raw sequence or even BAM files, but just

level 3 data (regions classified either as mutated or non-
mutated) we have not performed (yet?) this quite interesting
analysis.

Conclusions

The use of data driven approaches instead of biological hy-
pothesis motivated ones, explores a multidimensional ge-
nomic analysis that might be able to find relevant genes
that are likely to be overlooked mostly due to the fact that
they remain largely unexplored. It is known, that each ad-
ditional genomic dimension increases both, the amount of
information and, consequently the biological and computa-
tional complexity of the analysis. We present a model, 3-
MDI that integrates several technological platforms visual-
izing and prioritizing different biological scenarios thus en-
abling the researcher to pursue in an educated way some of
or all these possibilities.
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