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Although other East Asian populations have been interrogated using high throughput 

sequence data, little is known about the genome-wide patterns of variation in populations 

residing on the Korean peninsula. Using the 38 whole genome sequences available from 

the Korean Personal Genome Project (KPGP), we investigated phylogenetic relationships 

between the samples and several standard population genetic parameters and tests.    In 

particular we infer that a rapid demographic expansion in effective population size 

occurred sometime in the recent past in the Korean population.   

 

Estimation of ancestral and current effective population size using whole genomic data is 

a challenging problem using next generation sequence data. Here we show how genomic 

data sets can be used to estimate basic population parameters such as the effective 

population size and population growth rate. This can be challenging for computationally 

intensive methods based upon the full-likelihood.  Instead of using a full likelihood we 

use an analogous function in which the data a replaced with a vector of summary 

statistics. This method has been implemented in the coalescence parameter inference 

package EVE (Vasco, 2008).  We present preliminary results here which demonstrate that 

this method works well on the whole genome sample obtained for the KPGP and 

compares favorably in accuracy with other recent methods developed for analyzing NGS 

samples such as  jPopGen Suite  (Liu, 2012). 

 

Overall molecular relationships mirrored important sample information for the KPGP.  

The phylogenetic trees for each chromosome demonstrated three outliers that are known 

to have European ancestry and recapitulated the monozygotic and dizygotic twin 

relationships in the sample set (see Figure 1, which shows a UPGMA tree for 

Chromosome 1 of the full sample).  

 

In order to perform the population genetic analysis, SNPs were extracted from the variant 

calling format files for each of the samples offered by the CAMDA 2012 website. The 

ANNOVAR
1
 is applied to generate the annotated file to obtain the final SNPs for each 
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sample. BEAGLE
2
 was used to phase the genotypes extracted for each of the samples 

chromosome by chromosome. Figure 2 shows the distributions of the number of 

genotypes are shared among all the samples by chromosome. Only shared genotypes 

among all the samples are considered since our plan is to use the phased haplotypes 

estimated from all the samples to infer the population genetics properties of the KPGP 

samples. We did notice that there was one European and two admixture individuals 

within the KPGP sample, so that parameter estimation was performed excluding these 

individuals.  All results shown here were obtained only from one strand of a phased pair 

of chromosomes. 

 

Parameter estimation of important population genetic factors was performed using the 

phased KPGP sequence data. The critical parameter  eN4 ; where eN  is the effective 

population size and   is the per site per generation scaled mutation rate, was estimated 

using several three constant population size estimators Watterson’s, Tajima’s and Fu’s 

Blue (Wakeley, 2009).  EVE fits the model of an exponentially population to whole 

genome sequence data (Vasco, 2008).  This can be expressed as N(t)=N0e
gt

 where g is the 

growth rate and N0 is the initial effective population size (i.e. the effective size at the time 

the sample was taken). In using the coalescent approach one looks backwards in time at 

N(-t) and from this vantage it appears that the population exponentially declines in size as 

the population experiences coalescence towards its most recent common ancestor. 

Therefore all EVE estimates of theta in per site substitutions are scaled in these units and 

allow taking into account demographic factors affecting the sequence data such as growth 

rate and change in N over time as individuals in the population evolved backwards in 

time to a most recent common ancestor. When solving for mutation rate in a rapidly 

expanding population one must explicitly take this process into account when interpreting 

the estimated parameters. For example, mutation rate  is equal to theta divided by 4N(t) 

where N(t) must be estimated from data. Since N(t) may itself be quite large, theta itself 

becomes a function of t and expands as well. From this point of view the per site estimate 

of theta must keep expanding in order to scale properly with a fixed and small mutation 

rate. This inflation property for the per site EVE estimate of theta will actually be seen in 

the estimates and is an expected property of population undergoing a rapid expansion in 

its effective size.  This likely to be a fundamental computational problem in interpreting 

population genetics estimates obtained from the 1000 genomes project data since it is 

thought that in recent human history a rapid population expansion in effective size 

occurred when humans first migrated out of Africa (Vasco, 2008; Wakeley, 2009). 

 

The results from the parameter estimates may be summarized as follows: 

 

1.  There exists a direct relationship between average pairwise distance computed 

using a coalescent tree (computed here using EVE) and average pairwise distance 

computed using pairwise alignments graphed on the x-axis (obtained using 

jPopGen Suite). This is shown in Figure 3.  Thus the genealogy of the Korean 

sample contains the complete information from the pairwise alignments and 

therefore maybe used to infer parameters using coalescent genealogies 

reconstructed from the aligned sequence data. 



2. Figure 4 shows of per site theta (x-axis) and growth rate estimates (y-axis and 

scaled in 2N generations).  There are three clusters. The first cluster to the far left 

are theta estimates obtained using Tajima’s estimator using pairwise alignments 

from jPopGen Suite.  The middle cluster represents theta estimates obtained using 

Watterson’s estimator but from coalescent tree reconstructions from EVE. The 

theta estimates to the far right were obtained from EVE and represent a fit of an 

exponentially growing model to the whole genomes.  It is clear that there exists 

substantial signal demonstrating a rapid change in effective population size in the 

Korean population. This is observed from the large growth rate estimates (scaled 

in 2N generations). 

3. Figure 5 shows the relationship the EVE estimate of population growth rate and 

Tajima’s D statistic, one of the most commonly used tests of selective neutrality.  

A negative Tajima’s D statistic is a standard indicator of a rapid population  

expansion therefore it is reasonable that there should exist a strong correlation 

between estimated growth rate and Tajima’s D as shown in the graph.  We also 

found that compared to other populations studied the Korean samples exhibited an 

increased/decreased skewing of the site frequency spectrum towards rare variants 

(results not shown).  

 

Future computational work involves incorporating sequence error models and analysis of 

bias. This will lead to a new class of fast and reliable bias-corrected coalescent estimators 

for efficient computational population genetic analysis of next generation sequence data.  

In future we will incorporate estimation of recombination, migration and selection using 

error models sequence data. Finally we are working on the incorporation of CNV and 

indels into coalescent estimators and using these to develop statistical tests of neutrality 

and parameter inference. 
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Figure 1.  All phylogenetic trees for each chromosome (not shown here),  such as this 

UPGMA tree which is shown for Chromosome 1,  demonstrate that three outliers exist 

for the KPGP sample.  One these is known to have European ancestry (labeled s3a here). 

Two others exhibit substantial admixture (labeled s4a and s5a here). The phylogenetics 

trees also demonstrate and recapitulate the monozygotic and dizygotic twin relationships 

in the sample set (not shown here except in Chromosome 1).  The branch lengths are 

scaled in substitutions per site.   

 

 
Figure 2.  Distribution of the number of SNV shared among all the samples by 

chromosome. 

 
 



Figure 3. Graph showing the relationship between average pairwise distance computed 

using a coalescent tree reconstruction (such as shown in Figure 1), graphed on the y-axis 

obtained using EVE, and average pairwise distance computed using pairwise alignments 

graphed on the x-axis obtained using jPopGen Suite.  This figure shows that the 

genealogy of the Korean sample contains the complete information from the pairwise 

alignments and therefore maybe used to infer parameters using coalescent genealogies 

reconstructed from the aligned sequence data. 

 

 

 

 
 

Figure 4.  Graph of per site theta (x-axis) and growth rate estimates (y-axis and scaled in 

2N generations).  There are three clusters. The first cluster to the far left are theta 

estimates obtained using Tajima’s and Fu’s Blue estimator using jPopGen Suite.  The 

middle cluster represents theta estimates obtained using Watterson’s estimator but from 

coalescent tree reconstructions from EVE. The theta estimates to the far right were 

obtained from EVE and represent a fit of an exponentially growing model to the whole 

genomes.  All EVE estimates of theta are scaled in 2N0 generations and obtained by 

fitting an exponential growth for change in effective size. While EVE estimates of theta 

in per site substitutions in the graph appear quite large these are scaled in these units 

representing rates of change in effective size and the least squares computational method 

automatically adjusts for growth rate and change in N over time as signal in the data since 

theta changes along side of N during the computation (see Vasco 2008 for more detail the 

mechanics of the estimation algorithm).  Therefore when solving for mutation rate from 

these per site esimates for one must explicitly take this into account from the estimated 

parameters in terms of N(t) not a constant valued N. See text for a more detailed 

explanation. 

 

 

 
 

Figure 5.  This graph shows the relationship the EVE estimate of population growth rate 

(y-axis) and Tajima’s D statistic (x-axis). 
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Knowledge of the haplotype structure of the human genome would improve genotype calls, increase the 
power of association studies, and shed light on the evolutionary history of humans. Common haplotypes 
are found by regions of linkage disequilibrium (LD) in genotype data. The advent of new sequencing 
technologies also facilitates the identification of rare haplotypes. However, LD‐related methods fail to 
extract rare haplotypes because of the high variance of LD measures. Rare haplotypes can be inferred by 
a region of identity by descent (IBD) in two individuals. However, IBD detection methods require 
sufficiently long IBD regions to avoid high false positive rates and are computationally expensive as they 
consider all pairs of individuals. We propose identifying rare haplotypes by HapFABIA which uses 
biclustering to combine LD information across individuals and IBD information along the chromosome. 
HapFABIA significantly outperformed IBD methods at detecting rare haplotypes on simulated genotype 
data with implanted rare haplotypes.  

To identify rare haplotypes in the Korean population, we applied HapFABIA to data from the Korean 
Personal Genome Project (KPGP) supplied via Critical Assessment of Massive Data Analysis (CAMDA). 
Genotyping data from the KPGP was combined with those from the 1000‐Genomes‐Project leading to 
1,131 individuals and 3.1 million single nucleotide variants (SNVs) on chromosome 1 – we only analyzed 
chromosome 1 to comply with the Ft. Lauderdale agreement for the use of unpublished data for method 
development. For biclustering such large data sets, we developed a sparse matrix algebra for the FABIA 
biclustering algorithm.  

HapFABIA identified 113,963 different rare haplotypes marked by tagSNVs that have a minor allele 
frequency of 5% or less. The rare haplotypes comprise 680,904 SNVs; that is 36.1% of the rare variants 
and 21.5% of all variants. The vast majority of 107,473 haplotypes is found in Africans, while only 9,554 
and 6,933 are found in Europeans and Asians, respectively.  

HapFABIA revealed a large number of genotyping errors in the KPGP data (e.g. Figure 3). The KPGP data 
comprises two twin pairs and a large Korean family that contains a Caucasian female from US. In 
particular, genotyping errors are found as SNV disagreements at twin haplotypes (e.g. Figure 5) and by 
haplotypes that were observed exclusively in KPGP samples including the Caucasian female (e.g. Figure 
4). We corrected for these genotyping errors by removing haplotypes that are observed in just one 
population and removing all relations between individuals according to the pedigree information. 

We characterized haplotypes by matching with archaic genomes. Haplotypes that match the Denisova or 
the Neandertal genome are significantly more often observed in Asians and Europeans. Interestingly, 
haplotypes matching the Denisova or the Neandertal genome are also found, in some cases exclusively, 
in Africans. Our findings indicate that the majority of rare haplotypes from chromosome 1 are ancient 
and are from times before humans migrated out of Africa. 



The enrichment of Neandertal haplotypes in Koreans (odds ratio 10.6 of Fisher’s exact test) is not as high 
as for Han Chinese from Beijing, Han Chinese from South, and Japanese (odds ratios 23.9, 19.1, 22.7 of 
Fisher’s exact test) – see also Figure 7. In contrast to these results, the enrichment of Denisova 
haplotypes in Koreans (odds ratio 36.7 of Fisher’s exact test) is is higher than for Han Chinese from 
Beijing, Han Chinese from South, and Japanese (odds ratios 7.6, 6.9, 7.0 of Fisher’s exact test) – see also 
Figure 6 and examples in Figure 1 and Figure 2.  

Data Analysis steps:  

1. Combine the vcf genotyping data from KPGP with those from the 1000‐Genomes‐Project (3.1 million 
SNVs on chromosome 1 of  1,134 individuals – vcftools, samtools) 

2. Remove common and private SNVs 
3. Transform the genotyping data into the sparse matrix format of HapFABIA 
4. Apply HapFABIA to extract haplotypes 
5. Base calling of Denisova and Neandertal genome at the SNV positions of KPGP and 1000‐Genomes‐

Project 
6. Analyze and annotate the haplotypes 

 Figure 1: Example of a haplotype matching the Denisova genome found exclusively in Asians including 
Koreans. The y‐axis gives all chromosomes that have the haplotype and the x‐axis consecutive 
SNVs/Indels/SVs. Major alleles are shown in yellow, minor alleles of tagSNVs in violet, and minor alleles of 
other SNVs in cyan. The row labeled “model L” indicates tagSNVs identified by HapFABIA in violet. The rows 
“Ancestor”, “Neandertal”, and “Denisova” show bases of the respective genomes in violet if they match the 
minor allele of the tagSNVs (in yellow otherwise). Missing Neandertal tagSNV bases are shown in orange. 



 

 

 

Figure 2: Another example of a haplotype matching the Denisova genome including Koreans.  

Figure 3: Example of a haplotype that contains genotyping errors (right border). 



 

 

 

 

Figure 4: Example of a haplotype representing genotyping errors. The haplotype is exclusively observed 
in KPGP samples, however KPGP10 is an US American Caucasian female sequenced by KPGP. Many 
tagSNVs are inconsistent across samples.  

Figure 5: Example of a haplotype possessed by the twins KPGP90 and KPGP91. Differences in the 
twins are presumably genotyping errors.
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Figure 6: Persons correlation coefficient between Denisovian SNVs and subpopulations across all 
haplotypes of chromosome 1. 

Figure 7: Persons correlation coefficient between Neandertal SNVs and subpopulations across all 
haplotypes of chromosome 1. 
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Large-scale, next generation DNA sequencing has increasingly become commonplace in 

numerous scientific activities, providing vital data fueling investigations into 

phylogenetic relationships, evolutionary models, agricultural traits, disease risk, and 

response to pharmaceuticals. While whole genome sequencing offers unprecedented 

opportunities, substantial challenges remain in the bioinformatics, statistical analysis and 

interpretation of results. In this study we analyzed the 39 human genomes from the 

Korean Personal Genome Project (KPGP) – all sequenced on the Illumina HiSeq 2000 

Platform with 30-40x coverage – and were able to characterize genome-wide genetic 

variation patterns in the samples including the spatial distribution and inter-individual 

variation of (i) single nucleotide variants, (ii) indels, and (iii) frameshift mutations. 

Our analyses are based on the variant calling format (VCF) files from the CAMDA 2012 

website. For each of the sample, we have separate VCF files for single nucleotide 

variations (SNVs) as well as the indels (INDELs). All the VCFs are processed using by 

ANNOVAR
1
 to get the final data sets for performing our downstream analyses.  

 

Not unexpectedly, we found selected mapping errors occurring at highly repetitive 

regions. For example, all female subjects in the study exhibited sequence reads that 

mapped to the Y chromosome. Upon further analysis it was shown that these reads did 

not map uniquely in the genome. We suggest that data cleaning using raw fastq sequence 

files are very important for the follow-up analysis.    

   

Interestingly, a positive correlation was observed for the rate of genetic variants in each 

of the different variant classes. In Fig. 1, we showed, for the INDELs counts from the 

NGS data, it follows a pattern where the average of the counts of INDELs from sample 1  

to 20 are in general higher then sample 21 to 39 from chromosome 1 to chromosome 22, 

for the chromosome X and chromosome Y (17 female samples and 22 male samples), the 

random pattern are presented. This variation might be due to the sequencing for these 39 

samples are not done at the same time or even not the same places.  
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Fig. 1 

 

In Fig. 2, we showed the graphs of variant frequency spectrum (the distribution for the 

number of variants having a given frequency in our sample) in each chromosome using 

the SNVs called. We calculated the allele frequencies for all the shared SNPs from all 

samples and reported then we reported the counts of SNPs which the MAF (minor allele 

frequency) is from 0 to 0.5. (0 out of 39*2 up to 39 out of 39*2).  

 
Fig. 2  



 

 

In Fig. 3, SNVs called from each of the sample are summarized as the average number of 

the SNPs called for all samples and also the range of numbers of SNPs for each 

chromosome of all samples. The green lines show the average number of markers for 

each chromosome, where the blue and red lines represent the minimum and maximum 

numbers of markers among all the samples, respectively.  

 
Fig. 3 

 

In Fig. 4 and 5, we showed the graphs based on the counts of frameshift, insertions and 

deletions shared at least in 25% of the samples (10 samples). The red color is all the 

unrelated samples, the two blue samples marked as triangle are two monozygosity twins, 

the two green samples marked as diamond are dizygosity twins, the two light blue 

samples marked as cross are admixture of European with Korean samples and one black 

sample marked as circle is from European inheritance. All the frameshift insertions and 

deletions are summarized in gene levels. Further study using the quality scores as well as 

the read depth of the sequences would be conducted to confirm the individual insertions 

as well as deletions are valid. Genes found to have a high frequency of frameshift 

mutations in the KPGP sample set and their functional implications needs to be further 

discussed.  

 

 



 
Fig. 4 

 

 
Fig. 5 
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The Critical Assessment of Genome Interpretation (CAGI, \'kā-jē\) is a community 
experiment to objectively assess computational methods for predicting the phenotypic 
impacts of genomic variation. In this assessment, participants are provided genetic 
variants and make predictions of resulting phenotype. These predictions are evaluated 
against experimental characterizations by independent assessors. The CAGI experiment 
culminates with a community workshop and publications to disseminate results, assess 
our collective ability to make accurate and meaningful phenotypic predictions, and better 
understand progress in the field. A long-term goal for CAGI is to improve the accuracy of 
phenotype and disease predictions in clinical settings. 
 
The CAGI 2011 experiment consisted of 11 diverse challenges exploring the phenotypic 
consequences of genomic variation.  In two challenges, CAGI predictors applied the 
state-of-the-art methods to identify the effects of variants in a metabolic enzyme and 
oncogenes.  This revealed the relative strengths of each prediction approach and the 
necessity of customizing such methods to the individual genes in question; these 
challenges also offered insight into the appropriate use of such methods in basic and 
clinical research. CAGI also explored genome-scale data, showing unexpected 
successes in predicting Crohn’s disease from exomes, as well as disappointing failures 
in using genome and transcriptome data to distinguish discordant monozygotic twins 
with asthma.  Complementary approaches from two groups showed promising results in 
predicting distinct response of breast cancer cell lines to a panel of drugs. Predictors 
also made measurable progress in predicting a diversity of phenotypes present in the 
Personal Genome Project participants, as compared to the CAGI predictions from 2010.  
 
CAGI is planned again for 2012 and we welcome participation from the community. 
Current information will be available at the CAGI website at 
http://genomeinterpretation.org. 
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Genome-wide association studies have produced numerous marked association results, 
providing clues as to underlying gene networks responsible for common diseases.  One of 
the more straightforward uses of these association data – particularly the small subset that 
enjoy moderate to large effect sizes – is in medical prognosis, diagnosis, and elucidation 
of pharmacogenetic effects. The use of sequence variants in clinical applications is not 
without  substantial  challenges,  not  the  least  of  which  include  (i)  accurate,  error-free 
sequence data is needed for medical use,  (ii)  variant calling algorithms must produce 
reliable, replicable results, (iii) data storage and retrieval processes must be reliable and 
seamless  for  this  massive  data,  (iv)  previous  studies  must  have  produced  clinically 
meaningful  and  actionable  results  in  populations  relevant  to  those  individuals  being 
tested, and (v) analysis techniques must be both statistically and genetically appropriate. 

The  Korean  Personal  Genome Project  (KPGP)  data  available  for  the  CAMDA 2012 
competition consisted of 39 human genomes all sequenced on the Illumina HiSeq 2000 
Platform with an average of 30-40x coverage. One individual in the KPGP was identified 
as  being  female  and  to  have  been  prescribed  the  hypertensive  pharmaceutical 
lercanidipine, presumably for the treatment of essential hypertension. In this study we 
sought  to  use  the  whole  genome  sequence  data  from this  individual  to  address  two 
clinical questions: First, given that a CYP3A5-linked polymorphism, rs776746, has been 
previously identified as  modifying the pharmacologic  response to  lercanidipine,  what 
clinically-relevant lercanidipine information can be derived from the sequence data at 
CYP3A5 for  this  individual  of  interest?  And second,  how informative  are  previously 
identified GWAS polymorphisms for the calculation of a posterior probability of essential 
hypertension for this individual?

To  answer  the  lercanidipine  pharmacogenetics  question,  sequence  information  for 
individual TGP2010D0010 were obtained and all resulting CYP3A5 variants 
were  analyzed  for  possible  functional  impact  in  regulation,  protein  function,  and/or 
evolutionary  conservation.  Variants  from single  nucleoid  variants  (SNVs)  as  well  as 
indels (INDELs) are generated using the variant calling format files from each of the 
KPGP samples obtained from CAMDA 2012 website. ANNOVAR1 is used to generate 
the  final  annotated variants  data  both  SNVs as  well  as  INDELs for  further  study of 
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pharmacogenetics.  Given  the  gene CYP3A5,  Table  1  and  2  summarized  the  genetic 
variants detected from our NGS data.   

To calculate a probability of essential hypertension in individual TGP2010D0010 given 
genetic factors, we identified a collection of SNPs that have been found to be significant 
in previous, highly-powered GWAS studies of essential hypertension and replicated in at 
least one additional, independent study. A handful of SNPs, obtained from 13 large-scale 
hypertension studies, were used as features in a predictive model for hypertension. We 
assumed conditional independence between SNPs and employed a Naïve Bayes modeling 
approach to obtain a posterior probability of essential hypertension (formula below).  M 
is the number of SNPs selected from the previous studies. 

The  same  approach  could  be  repeated  to  generate  posterior  probability  of  essential 
hypertension for other  samples in  the KPGP. Our research is  ongoing to  find all  the 
possible variants related to hypertension and evaluate in our model. The similar model 
would be easily adapted to other clinical conditions if the information for each of the 
KPGP samples is released.  
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Sample ID Type Gene RS Chr Ref Obs Zygosity Qual ReadDepth
TGP2010D001
0 intronic CYP3A5

rs18648344
6 chr7 T C het 12.3 32

TGP2010D001
0 intronic CYP3A5 rs2040992 chr7 G A hom 214 31
TGP2010D001
0 UTR3 CYP3A5 chr7 T G het 24 36

Table 1: SNV detected with NGS data for individual TGP2010D0010

IND Type Gene RS Chr Ref Obs Zygote Qual ReadDepth
TGP2010D001
0 intronic CYP3A5 chr7 - AAAT hom 176 18
TGP2010D001
0 intronic CYP3A5 chr7 GT - hom 192 30



Table 2: Indels detected with NGS data for individual TGP2010D0010
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Recent advances in next-generation sequencing technologies make it possible to search for rare 
and functional variants for complex diseases systematically.  Rare causal variants can be 
enriched in families with parents and an offspring (trio).  Trio studies facilitate detection of de 
novo mutation and newly homozygous mutation events and provide an attractive resource in next 
generation sequencing studies.  We developed a heuristic framework for variant calling and de 
novo mutation detection in trio samples.  Our framework is able to accurately identify variant 
sites and assign individual genotypes for SNVs and INDELs, and can handle de novo mutation 
and newly homozygous mutation events.  It increases the sensitivity and specificity of variant 
calling and de novo mutation detection.  Unlike most current approaches, our framework reads 
data from three samples (parents and an offspring) simultaneously; a heuristic and statistical 
algorithm detects sequence variants and excludes false positive de novo mutations by testing the 
read counts supporting the reference allele vs. the read counts supporting a variant allele between 
the offspring and one of the parents respectively using a Fisher’s exact test.  If the larger p-value 
of the two tests is greater than 0.05, the candidate of de novo mutation could be false position 
and will be excluded from the candidate list of de novo mutations.  Compared with the standard 
approach of ignoring relatedness, our methods identify and accurately genotype more variants, 
and have high specificity for detecting de novo mutations.  The family-aware calling framework 
dramatically reduces Mendelian inconsistencies and is beneficial for trio analysis.  We applied 
these methods to the analysis the two trios from the 1000 Genomes Project.  Our results 
demonstrated the robust performance of the developed program for de novo mutation and newly 
homozygous mutation detection and shed new light on the landscape of detecting de novo 
mutations in trios. 
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1 Introduction
In the field of toxicology, animal studies and in vitro experiments are frequently used as
surrogates for human studies even though they have shown poor agreement so far. Besides,
it is still unclear how the results obtained from one animal species, such as rats, can help im-
portant biomedical research areas for humans, such as the prediction of drug-induced liver
injury (DILI). This work is an attempt to address both issues, using the toxicogenomics data
provided by CAMDA.

First, we analyzed to what extent animal studies can be replaced by in vitro assays. We
compared lists of differentially expressed probesets between rat in vivo and rat in vitro data,
and found poor agreement between the two. This confirmed previous studies suggesting that
probeset-level analysis has major limitations, and motivated us to consider higher levels
of data abstractions. Thus, we present a data collapsing approach which improves the
agreement between in vivo and in vitro data. We collapsed probesets and evaluated the
in vivo-in vitro agreement using Gene Set Enrichment Analysis (GSEA). We also collapsed
time points and evaluated the in vivo-in vitro agreement using the binary classification
framework.
∗jfk.pessiot@aist.go.jp
†w.fujibuchi@cira.kyoto-u.ac.jp
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Second, we addressed the problem of predicting DILI using available microarray data.
Intuitively, we would expect that unprocessed in vitro data is too noisy for DILI prediction
and would need to be collapsed in order to achieve a better signal-to-noise ratio. In contrast,
we would also expect unprocessed in vivo data to contain information that is important
for predicting DILI. This information could be lost during data collapsing, resulting in a
lower prediction performance. Our prediction results tend to confirm these assumptions,
and suggest to use unprocessed in vivo data simultaneously with collapsed in vitro data to
improve the prediction performance of DILI.

2 Comparison between in vivo and in vitro data

2.1 Differential expression results
We studied the similarity between in vivo and in vitro data at the probeset-level (using
differential expression analysis) and at the probeset group level (using GSEA).

Probeset-level differential expression We applied empirical Bayes statistics 1 to test for
agreement between in vivo and in vitro probesets at corresponding time points. The p-
values obtained from statistical testing of in vitro probesets were used as scores to predict
differentially expressed probesets in vivo. The classification performance was measured
by the AUC score, averaged over all drugs and all doses. Ideally, a perfect agreement
between in vivo and in vitro data would achieve AUC= 1. In our experiments, we obtained
AUC= 0.56 at t = 2 hours, AUC= 0.56 at t = 8 hours and AUC= 0.60 at t = 24
hours. Overall, the agreement between in vivo and in vitro is poor, at the probeset-level,
with respect to differential expression analysis.

Gene Set Enrichment Analysis GSEA 2 was used to compare expression patterns for in
vitro and in vivo data. Each full list of in vitro probesets was used for enrichment testing
against the top 1% absolute fold change (i.e. log2 ratio) list of in vivo probesets and vice
versa. This was done for two pairs of in vivo-in vitro time points: (2 hours, 3 hours) and
(24 hours, 24 hours). In short, four analyses were performed per drug. Fold change was
calculated between control and low dosages versus medium and high dosages due to the
low number of replicates. In this analysis, significant enrichment (p-value < 0.05) means
that the high fold change probesets are expressed similarly, as a group, between in vivo and
in vitro data.

Namely, about 55% of the 131 drugs had full agreement between in vivo and in vitro
data, 34% of drugs had 75% agreement, 10% of drugs had 50% agreement and 2% of drugs
had 25% agreement. To check that the lists of probesets were not simply correlated, Spear-
man’s rank correlation was calculated between each pair of in vivo and in vitro lists. None
of the pairs of lists had a higher correlation of 0.25 showing that there is little correlation
between in vivo and in vitro data simply at the probeset-level.

1http://bioinf.wehi.edu.au/limma/
2http://www.broadinstitute.org/gsea/
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GSEA using Gene Ontology on liver functions GSEA was used to test probesets as-
sociated with liver functions identified with gene ontology for enrichment between in vivo
and in vitro data. AmiGO 3 was used to select 32 gene ontologies which were then ranked
by the total number of child ontological nodes. The in vivo and in vitro data were then
tested for enrichment against the probesets with the selected gene ontologies. About 50%
of drugs had full agreement between enrichment analyses, 42% of drugs had half agreement
and 8% of drugs had no agreement between the analyses. Thus, GSEA produces the same
enrichment results between in vivo and in vitro about half the time and similar results most
of the time with respect to liver functional enrichment analysis.

2.2 Collapsing probesets and time points
We now show that it is possible to improve the agreement between in vivo and in vitro
data by appropriately collapsing probesets and time points. From the raw CEL files, we
extracted the MAS5 probeset-level values using LIMMA. Then, we averaged those values
over biological replicates. We computed the fold changes for each condition (drug, dose
and time point), i.e., the log2 ratios between the sample values and the corresponding con-
trol values.

In Figure 1, we plotted the in vitro fold change (averaged over all drugs and all doses)
as a function of the in vivo fold change, at t = 24 hours. This plot shows that while there is
no obvious sign correlation between in vivo and in vitro data, there is a correlation between
their absolute values. In other words, even if a gene has a highly positive fold change in
vivo, we cannot always expect a highly positive fold change in vitro. However, a gene with
a high in vivo absolute fold change tends to have a high in vitro absolute fold change as well.

In order to improve the signal-to-noise ratio of the data, we also considered a data col-
lapsing strategy. We collapsed probesets into genes, by computing the average intensity of
the probesets in each gene. We also collapsed each time series by computing their average
absolute fold change. To evaluate our data collapsing strategy, we considered a binary clas-
sification problem where the top 1% genes with the highest in vivo average absolute fold
change were defined as true positives, and the remaining genes were defined as the true neg-
atives. The corresponding average absolute in vitro fold changes were used as prediction
scores. The classification performance, which reflects the agreement between in vivo and
in vitro data, was measured by the AUC. Our experiments showed that our data collapsing
strategy achieved the highest average AUC score among all other tested pre-processings:
AUC=0.85± 0.04.

Correlation matrix analysis Using the data collapsing approach defined previously, we
evaluated the similarity between in vivo and in vitro data with respect to each gene. For
each gene, we defined two correlation matrices characterizing the gene’s responses to drugs
in vivo and in vitro. If the Frobenius norm of the difference between these two correlation

3http://amigo.geneontology.org
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Figure 1: In vivo fold changes versus in vitro fold changes

matrices is small, then the corresponding gene behaves similarly in vivo and in vitro. When
running downstream analysis of in vitro data, this approach can be used to filter out incon-
sistent genes, and keep the genes that show high correlation between in vivo and in vitro
data. Table 1 shows the top 10 genes which show the most similar behaviours between in
vivo and in vitro conditions.

3 Predicting drug-induced liver injury in humans
We considered the DILI prediction problem as a binary classification of “Most DILI”
against “Less DILI or no DILI”. For each available data source, we considered all DILI-

Gene Symbol In vivo-in vitro dist. Gene Symbol In vivo-in vitro dist.
Dazap2 0.4884 Actr2 0.5808
Arf1 0.5446 Gdi2 0.5854
Aamp 0.5573 Cmpk1 0.6030
Ube2l3 0.5608 Morf4l1 0.6121
Cdc42 0.5629 Arpc2 0.6284

Table 1: Genes which behave similarly in vivo and in vitro, and their corresponding distance
measures
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Collapse Collapse Absolute Human Rat Rat in vivo Rat in vivo
probesets time points values in vitro in vitro repeated dose single dose
False False False 0.52 ± 0.17 0.52 ± 0.14 0.66 ± 0.14 0.61 ± 0.12
False False True 0.59 ± 0.08 0.58 ± 0.08 0.61 ± 0.17 0.67 ± 0.15
False True True 0.58 ± 0.12 0.55 ± 0.20 0.52 ± 0.19 0.55 ± 0.10
True False False 0.50 ± 0.21 0.47 ± 0.18 0.64 ± 0.13 0.56 ± 0.20
True False True 0.56 ± 0.07 0.50 ± 0.16 0.55 ± 0.18 0.62 ± 0.18
True True True 0.59 ± 0.10 0.49 ± 0.12 0.59 ± 0.15 0.63 ± 0.17

Table 2: Average AUC scores for the DILI prediction problem

annotated drugs and doses with no missing data. The resulting human in vitro, rat in vitro,
rat in vivo repeated dose, and rat in vivo single dose data contained 223, 303, 303, and
301 samples, respectively. Each sample corresponds to a (drug, dose) pair. The probeset
space contained 54675 probesets for humans and 31099 probesets for rats. The gene space
contained 20026 genes for humans and 13878 genes for rats. We used the linear SVM clas-
sifier and RBF kernel SVM classifier, and evaluated their classification performance using
a ten-fold cross validation. Table 2 shows the AUC scores of the linear SVM.

Overall, AUC scores tend to be low, which shows that predicting DILI using expression
data is a difficult problem. We notice that the rat in vivo repeated dose and rat in vivo single
dose data reach high AUC scores when no data collapsing is applied (0.61≤AUC≤0.67).
However, collapsing either the probesets or the time points tend to decrease the AUC scores.
This suggests that in vivo data might contain important information related to DILI predic-
tion that is partially lost during data collapsing.

In contrast, the human in vitro data achieves its lowest AUC score when no pre-processing
is applied (AUC=0.52). Collapsing either the probesets or the time points tends to increase
the AUC scores, although not as high as with the rat in vivo data. This suggests that even
though the goal is to predict human DILI, using in vivo data from rats is more informative
than using in vitro data from humans. In contrast, the rat in vitro data achieves the lowest
AUC scores. This is not surprising as it combines the two limitations of the three other data
sources: it is not human, and it is not in vivo.

In summary, we first showed that our data collapsing strategy (using gene-level repre-
sentation, absolute fold changes, and average values over time points) achieved the high-
est average AUC score (0.85) between in vitro and in vivo among all other tested pre-
processings. Second, we showed that for the DILI prediction problem, using in vivo data
from rats is more informative than using in vitro data from humans. There could be further
improvements in prediction performance by combining unprocessed rat in vivo data with
processed (collapsed) human in vitro data.
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Djork-Arné Clevert1 , Martin Heusel1, Andreas Mitterecker1, Willem Talloen2,
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Abstract

Motivation: In the last decade, surprisingly few drugs reached the market. Many promising
drug candidates (approx. 80%) failed during or after Phase I, inter alia, due to issues with
undetected toxicity [1]. The problem of undetected toxicity becomes even more apparent in the
context of drug-induced illness which causes approximately 100,000 deaths per year solely in the
USA [2]. Toxicogenomics avoids such problems by prioritizing less-toxic drugs over more-toxic
ones in early drug discovery. To this end, toxicogenomics employs high throughput molecular
profiling technologies and predicts the toxicity of drug candidates. For this prediction, large-scale
-omics studies of drug treated cell-lines and/or pharmacology model organisms are necessary.
However, data exploitation of such large-scale studies requires a highly optimized analysis pipeline,
that provide methods for correction of batch effects, noise reduction, dimensionality reduction,
normalization, summarization, filtering and prediction.

We present a novel pipeline for the analysis of large-scale datasets in particular for transcrip-
tomic data. It is tested and evaluated on the Japanese Toxicogenomics Project (TGP) [3].

Methods and Material: The Japanese Toxicogenomics Project (TGP) dataset contains in vitro
and in vivo studies in rat and human of 131 and 119 compounds, respectively. It is one of
the most comprehensive efforts in toxicogenomics and, furthermore, allows to evaluate to what
degree in vitro studies can predict in vivo responses.

However, a data quality analysis of the Affymetrix RAE230 2.0 GeneChip microarray data
revealed severe batch effects. Batch effects were corrected by a three step procedure. First, the
raw intensities within each compound, time point and dose-level where scaled to the same median.
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Secondly, log-ratios for each compound and its corresponding compound vehicle were calculated.
Finally, the data were quantile-normalized [4] across all batches. The probes were mapped using
custom CDFs (Version 15.1.0, ENTREZG) from Brainarray [5] and summarized with FARMS [6].
A new FARMS algorithm has been developed to allow summarization of huge microarray datasets
like the TGP dataset. Gene filtering was based on FARMS’ informative/non-informative (I/NI)
call [7, 8].

After this data preprocessing, we predicted the in vivo pathological findings and toxicity from
summarized in vitro gene expression values using the Potential Support Vector Machine (P-
SVM) [9]. The P-SVM is designed to handle huge data sets because it is based on a quadratic
optimization problem in feature dimensions instead of sample dimensions as standard SVMs.
Therefore FARMS’ gene filtering can be efficiently combined with P-SVM prediction to process
massive datasets.

Results: WILL BE ADDED SOON
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Prediction of the Drug Induced Liver Injury (DILI) is problematic. Given the number 

of inferences between rat liver expression data and the regulatory process which 

parses the DILI scores into grades, relying upon multiple indirect sources of 

reports on the drug is non linear.  Figures 1. and 2. indicate the performance advantage of 

non-linear predictive models over linear ones.  These models were trained on the CAMDA rat liver 

data set as follows. 

We condensed the three DILI designations into a unified integer grade scale 

consistent with the FDA definitions [1] and trained supervised linear predictors 

[2].   We first trained a Lasso linear regression model to predict single integer DILI grade (SIDG) 

using Rat liver expression sets taken at the last (29 day) time point taken at high and zero dosage.  This 

resulted in minimum, cross validated, root mean square prediction error of 1.91 over the range of DILI 

unified grades from 1 to 9 with a correlation of 0.74.  Compared to actual DILI grades (Figure 1.) the 

predictions are compressed in scale and don't increase monotonically.  A non-linear model might 

overcome these deficiencies.  The sheer number of gene expression measurements in a micro array 

makes it difficult to employ the most powerful non-linear machine learning techniques (e.g. basis 

expansion or stochastic gradient boosted trees).  The sparsity of the Lasso model suggests a way 

forward. 

Lasso models give zero weight to most of the array intensities.  The model shown in Figure 1. 

incorporates 1461 expression microarray probe sets.  This is a small enough number of attributes to fit 

a boosted tree model.   Figure 2. shows the performance of a cross validated gradient boosted tree 

model fit to the attributes isolated by lasso regression.  These results are much improved, with the 

gradient boosted model predicted vs. actual DILI ratings was 0.90, with a root mean squared error of 

1.81.  

While the derived Gradient Boosted model shows drug specific patterning where predictions for drug 

data not used in testing do not predict as well, the priming of non linear models from linear models of 

expression data is significant for two reasons.  Although there are many cases in bioinformatics where 

nonlinear models are needed to train adequate models, but because nonlinear models are searching 

through a space that is geometrically or exponentially larger than the number of linear degrees of 

freedom.  In the case of the RAE230_2 arrays, stochastic gradient boosting would be searching through 

approximately a billion degrees of freedom.  Limiting the number of probe sets for the gradient boost 

search makes a model trainable quickly enough to do iterative optimizations to improve the model.  

Since stochastic gradient boosting is generalizable to map-reduce and other big data treatments [5], we 



see a promising path to broaden the opportunities to make more flexible models for expression data in 

the near future.  

With approximately1500 probe sets incorporated to the model we have built a topic modeling system 

based on the Latent Dirichlet Allocation [8] method to convey a sense of the biological functions 

related to the distinguishing probe sets in our model. [Figure 3.] 

 

Figure 1: Lasso linear regression model predictions 

plotted against training unified DILI scores. 

Overall RMS error is 1.91.  

Figure 2: Gradient Boosted Tree Score predictions 

plotted against actual Unified DILI score shows a 

strong median correlation. Overall RMS error is 

1.8. 

 

Figure 3: Example topic models based from pubMed abstracts on 696 genes from the cross validated 

Gradient Boosted Tree Model. 
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The Institute of Medicine of the United States has recently envisioned an accelerated 
adoption of pharmacogenomics in clinical practice in the next five years. A major gap to 
be resolved is how to exchange the pharmacogenomics genotype information given the 
current disparate practice of paper-based and electronic-based medical records. In 
addition, how can a patient safekeep the genotype information? 

We utilized the CAMDA 2012 Pharmacogenomics Data Set to demonstrate a 
conceptual design of what the future might be. The pharmcogenomics of KPGP001 
patient is encoded into the “Medicine Safety Code” and printed on the back of a health 
insurance card.  

 

Figure 1. An example health insure Card in the United States (left) and a conceptual 
design of the future of a health insurance card with the "Medicine Safety Code" (right). 

The Medicine Safety Code is an international consortium promoting a simple, yet 
powerful format combined with software tools for making medical practice safer and 
more personalized (http://safe-code.org). After whole-genome sequencing, actionable 
pharmacogenomic traits of an individual patient can be encoded as a Medicine Safety 
Code, which can be represented as a 2D barcode (that can be printed and read by 



common smartphones and other devices) and as a URL (that can be used by computer 
systems). This simplicity and flexibility makes the Medicine Safety Code universally 
available and applicable.  

The pharmacogenomic traits can be used to improve the selection and dosing of many 
common pharmaceuticals, thereby lowering the rate of adverse drug events and 
healthcare costs -- while improving the efficiency of treatment and the quality of life of 
patients. Moreover, the proposed framework can be extended to include adverse drug 
reactions of the patient.  
 

In terms of privacy and data security, the Medicine Safety Code offers the same level of 
security of paper-based medical information. As such, it fits nicely into the current legal 
framework and social acceptance.  
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